Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

-\frac{17}{4}a+b+\frac{4}{5}b-b+\frac{7}{5}b-4a-\left(-\frac{1}{5}a-b\right)\left(b-5a\right)
Combine -\frac{1}{4}a and -4a to get -\frac{17}{4}a.
-\frac{17}{4}a+\frac{9}{5}b-b+\frac{7}{5}b-4a-\left(-\frac{1}{5}a-b\right)\left(b-5a\right)
Combine b and \frac{4}{5}b to get \frac{9}{5}b.
-\frac{17}{4}a+\frac{4}{5}b+\frac{7}{5}b-4a-\left(-\frac{1}{5}a-b\right)\left(b-5a\right)
Combine \frac{9}{5}b and -b to get \frac{4}{5}b.
-\frac{17}{4}a+\frac{11}{5}b-4a-\left(-\frac{1}{5}a-b\right)\left(b-5a\right)
Combine \frac{4}{5}b and \frac{7}{5}b to get \frac{11}{5}b.
-\frac{33}{4}a+\frac{11}{5}b-\left(-\frac{1}{5}a-b\right)\left(b-5a\right)
Combine -\frac{17}{4}a and -4a to get -\frac{33}{4}a.
-\frac{33}{4}a+\frac{11}{5}b-\left(-\frac{1}{5}ab-\frac{1}{5}a\left(-5\right)a-b^{2}+5ba\right)
Apply the distributive property by multiplying each term of -\frac{1}{5}a-b by each term of b-5a.
-\frac{33}{4}a+\frac{11}{5}b-\left(-\frac{1}{5}ab-\frac{1}{5}a^{2}\left(-5\right)-b^{2}+5ba\right)
Multiply a and a to get a^{2}.
-\frac{33}{4}a+\frac{11}{5}b-\left(-\frac{1}{5}ab+\frac{-\left(-5\right)}{5}a^{2}-b^{2}+5ba\right)
Express -\frac{1}{5}\left(-5\right) as a single fraction.
-\frac{33}{4}a+\frac{11}{5}b-\left(-\frac{1}{5}ab+\frac{5}{5}a^{2}-b^{2}+5ba\right)
Multiply -1 and -5 to get 5.
-\frac{33}{4}a+\frac{11}{5}b-\left(-\frac{1}{5}ab+1a^{2}-b^{2}+5ba\right)
Divide 5 by 5 to get 1.
-\frac{33}{4}a+\frac{11}{5}b-\left(\frac{24}{5}ab+1a^{2}-b^{2}\right)
Combine -\frac{1}{5}ab and 5ba to get \frac{24}{5}ab.
-\frac{33}{4}a+\frac{11}{5}b-\frac{24}{5}ab-a^{2}-\left(-b^{2}\right)
To find the opposite of \frac{24}{5}ab+1a^{2}-b^{2}, find the opposite of each term.
-\frac{33}{4}a+\frac{11}{5}b-\frac{24}{5}ab-a^{2}+b^{2}
The opposite of -b^{2} is b^{2}.
-\frac{17}{4}a+b+\frac{4}{5}b-b+\frac{7}{5}b-4a-\left(-\frac{1}{5}a-b\right)\left(b-5a\right)
Combine -\frac{1}{4}a and -4a to get -\frac{17}{4}a.
-\frac{17}{4}a+\frac{9}{5}b-b+\frac{7}{5}b-4a-\left(-\frac{1}{5}a-b\right)\left(b-5a\right)
Combine b and \frac{4}{5}b to get \frac{9}{5}b.
-\frac{17}{4}a+\frac{4}{5}b+\frac{7}{5}b-4a-\left(-\frac{1}{5}a-b\right)\left(b-5a\right)
Combine \frac{9}{5}b and -b to get \frac{4}{5}b.
-\frac{17}{4}a+\frac{11}{5}b-4a-\left(-\frac{1}{5}a-b\right)\left(b-5a\right)
Combine \frac{4}{5}b and \frac{7}{5}b to get \frac{11}{5}b.
-\frac{33}{4}a+\frac{11}{5}b-\left(-\frac{1}{5}a-b\right)\left(b-5a\right)
Combine -\frac{17}{4}a and -4a to get -\frac{33}{4}a.
-\frac{33}{4}a+\frac{11}{5}b-\left(-\frac{1}{5}ab-\frac{1}{5}a\left(-5\right)a-b^{2}+5ba\right)
Apply the distributive property by multiplying each term of -\frac{1}{5}a-b by each term of b-5a.
-\frac{33}{4}a+\frac{11}{5}b-\left(-\frac{1}{5}ab-\frac{1}{5}a^{2}\left(-5\right)-b^{2}+5ba\right)
Multiply a and a to get a^{2}.
-\frac{33}{4}a+\frac{11}{5}b-\left(-\frac{1}{5}ab+\frac{-\left(-5\right)}{5}a^{2}-b^{2}+5ba\right)
Express -\frac{1}{5}\left(-5\right) as a single fraction.
-\frac{33}{4}a+\frac{11}{5}b-\left(-\frac{1}{5}ab+\frac{5}{5}a^{2}-b^{2}+5ba\right)
Multiply -1 and -5 to get 5.
-\frac{33}{4}a+\frac{11}{5}b-\left(-\frac{1}{5}ab+1a^{2}-b^{2}+5ba\right)
Divide 5 by 5 to get 1.
-\frac{33}{4}a+\frac{11}{5}b-\left(\frac{24}{5}ab+1a^{2}-b^{2}\right)
Combine -\frac{1}{5}ab and 5ba to get \frac{24}{5}ab.
-\frac{33}{4}a+\frac{11}{5}b-\frac{24}{5}ab-a^{2}-\left(-b^{2}\right)
To find the opposite of \frac{24}{5}ab+1a^{2}-b^{2}, find the opposite of each term.
-\frac{33}{4}a+\frac{11}{5}b-\frac{24}{5}ab-a^{2}+b^{2}
The opposite of -b^{2} is b^{2}.