Evaluate
-\frac{24ab}{5}+b^{2}-a^{2}+\frac{11b}{5}-\frac{33a}{4}
Expand
-\frac{24ab}{5}+b^{2}-a^{2}+\frac{11b}{5}-\frac{33a}{4}
Share
Copied to clipboard
-\frac{17}{4}a+b+\frac{4}{5}b-b+\frac{7}{5}b-4a-\left(-\frac{1}{5}a-b\right)\left(b-5a\right)
Combine -\frac{1}{4}a and -4a to get -\frac{17}{4}a.
-\frac{17}{4}a+\frac{9}{5}b-b+\frac{7}{5}b-4a-\left(-\frac{1}{5}a-b\right)\left(b-5a\right)
Combine b and \frac{4}{5}b to get \frac{9}{5}b.
-\frac{17}{4}a+\frac{4}{5}b+\frac{7}{5}b-4a-\left(-\frac{1}{5}a-b\right)\left(b-5a\right)
Combine \frac{9}{5}b and -b to get \frac{4}{5}b.
-\frac{17}{4}a+\frac{11}{5}b-4a-\left(-\frac{1}{5}a-b\right)\left(b-5a\right)
Combine \frac{4}{5}b and \frac{7}{5}b to get \frac{11}{5}b.
-\frac{33}{4}a+\frac{11}{5}b-\left(-\frac{1}{5}a-b\right)\left(b-5a\right)
Combine -\frac{17}{4}a and -4a to get -\frac{33}{4}a.
-\frac{33}{4}a+\frac{11}{5}b-\left(-\frac{1}{5}ab-\frac{1}{5}a\left(-5\right)a-b^{2}+5ba\right)
Apply the distributive property by multiplying each term of -\frac{1}{5}a-b by each term of b-5a.
-\frac{33}{4}a+\frac{11}{5}b-\left(-\frac{1}{5}ab-\frac{1}{5}a^{2}\left(-5\right)-b^{2}+5ba\right)
Multiply a and a to get a^{2}.
-\frac{33}{4}a+\frac{11}{5}b-\left(-\frac{1}{5}ab+\frac{-\left(-5\right)}{5}a^{2}-b^{2}+5ba\right)
Express -\frac{1}{5}\left(-5\right) as a single fraction.
-\frac{33}{4}a+\frac{11}{5}b-\left(-\frac{1}{5}ab+\frac{5}{5}a^{2}-b^{2}+5ba\right)
Multiply -1 and -5 to get 5.
-\frac{33}{4}a+\frac{11}{5}b-\left(-\frac{1}{5}ab+1a^{2}-b^{2}+5ba\right)
Divide 5 by 5 to get 1.
-\frac{33}{4}a+\frac{11}{5}b-\left(\frac{24}{5}ab+1a^{2}-b^{2}\right)
Combine -\frac{1}{5}ab and 5ba to get \frac{24}{5}ab.
-\frac{33}{4}a+\frac{11}{5}b-\frac{24}{5}ab-a^{2}-\left(-b^{2}\right)
To find the opposite of \frac{24}{5}ab+1a^{2}-b^{2}, find the opposite of each term.
-\frac{33}{4}a+\frac{11}{5}b-\frac{24}{5}ab-a^{2}+b^{2}
The opposite of -b^{2} is b^{2}.
-\frac{17}{4}a+b+\frac{4}{5}b-b+\frac{7}{5}b-4a-\left(-\frac{1}{5}a-b\right)\left(b-5a\right)
Combine -\frac{1}{4}a and -4a to get -\frac{17}{4}a.
-\frac{17}{4}a+\frac{9}{5}b-b+\frac{7}{5}b-4a-\left(-\frac{1}{5}a-b\right)\left(b-5a\right)
Combine b and \frac{4}{5}b to get \frac{9}{5}b.
-\frac{17}{4}a+\frac{4}{5}b+\frac{7}{5}b-4a-\left(-\frac{1}{5}a-b\right)\left(b-5a\right)
Combine \frac{9}{5}b and -b to get \frac{4}{5}b.
-\frac{17}{4}a+\frac{11}{5}b-4a-\left(-\frac{1}{5}a-b\right)\left(b-5a\right)
Combine \frac{4}{5}b and \frac{7}{5}b to get \frac{11}{5}b.
-\frac{33}{4}a+\frac{11}{5}b-\left(-\frac{1}{5}a-b\right)\left(b-5a\right)
Combine -\frac{17}{4}a and -4a to get -\frac{33}{4}a.
-\frac{33}{4}a+\frac{11}{5}b-\left(-\frac{1}{5}ab-\frac{1}{5}a\left(-5\right)a-b^{2}+5ba\right)
Apply the distributive property by multiplying each term of -\frac{1}{5}a-b by each term of b-5a.
-\frac{33}{4}a+\frac{11}{5}b-\left(-\frac{1}{5}ab-\frac{1}{5}a^{2}\left(-5\right)-b^{2}+5ba\right)
Multiply a and a to get a^{2}.
-\frac{33}{4}a+\frac{11}{5}b-\left(-\frac{1}{5}ab+\frac{-\left(-5\right)}{5}a^{2}-b^{2}+5ba\right)
Express -\frac{1}{5}\left(-5\right) as a single fraction.
-\frac{33}{4}a+\frac{11}{5}b-\left(-\frac{1}{5}ab+\frac{5}{5}a^{2}-b^{2}+5ba\right)
Multiply -1 and -5 to get 5.
-\frac{33}{4}a+\frac{11}{5}b-\left(-\frac{1}{5}ab+1a^{2}-b^{2}+5ba\right)
Divide 5 by 5 to get 1.
-\frac{33}{4}a+\frac{11}{5}b-\left(\frac{24}{5}ab+1a^{2}-b^{2}\right)
Combine -\frac{1}{5}ab and 5ba to get \frac{24}{5}ab.
-\frac{33}{4}a+\frac{11}{5}b-\frac{24}{5}ab-a^{2}-\left(-b^{2}\right)
To find the opposite of \frac{24}{5}ab+1a^{2}-b^{2}, find the opposite of each term.
-\frac{33}{4}a+\frac{11}{5}b-\frac{24}{5}ab-a^{2}+b^{2}
The opposite of -b^{2} is b^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}