Evaluate
\frac{5}{2}-3a
Expand
\frac{5}{2}-3a
Share
Copied to clipboard
-\frac{1}{4}\times 12a-\frac{1}{4}\left(-10\right)
Use the distributive property to multiply -\frac{1}{4} by 12a-10.
\frac{-12}{4}a-\frac{1}{4}\left(-10\right)
Express -\frac{1}{4}\times 12 as a single fraction.
-3a-\frac{1}{4}\left(-10\right)
Divide -12 by 4 to get -3.
-3a+\frac{-\left(-10\right)}{4}
Express -\frac{1}{4}\left(-10\right) as a single fraction.
-3a+\frac{10}{4}
Multiply -1 and -10 to get 10.
-3a+\frac{5}{2}
Reduce the fraction \frac{10}{4} to lowest terms by extracting and canceling out 2.
-\frac{1}{4}\times 12a-\frac{1}{4}\left(-10\right)
Use the distributive property to multiply -\frac{1}{4} by 12a-10.
\frac{-12}{4}a-\frac{1}{4}\left(-10\right)
Express -\frac{1}{4}\times 12 as a single fraction.
-3a-\frac{1}{4}\left(-10\right)
Divide -12 by 4 to get -3.
-3a+\frac{-\left(-10\right)}{4}
Express -\frac{1}{4}\left(-10\right) as a single fraction.
-3a+\frac{10}{4}
Multiply -1 and -10 to get 10.
-3a+\frac{5}{2}
Reduce the fraction \frac{10}{4} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}