Evaluate
-\frac{3}{2}=-1.5
Factor
-\frac{3}{2} = -1\frac{1}{2} = -1.5
Share
Copied to clipboard
\frac{-6}{4\left(6-7+2\right)}
Divide -\frac{1}{4} by \frac{6-7+2}{6} by multiplying -\frac{1}{4} by the reciprocal of \frac{6-7+2}{6}.
\frac{-3}{2\left(2+6-7\right)}
Cancel out 2 in both numerator and denominator.
\frac{-3}{2\left(8-7\right)}
Add 2 and 6 to get 8.
\frac{-3}{2\times 1}
Subtract 7 from 8 to get 1.
\frac{-3}{2}
Multiply 2 and 1 to get 2.
-\frac{3}{2}
Fraction \frac{-3}{2} can be rewritten as -\frac{3}{2} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}