Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

-\frac{1}{3}x^{2}-\frac{1}{2}x-9=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\left(-\frac{1}{2}\right)^{2}-4\left(-\frac{1}{3}\right)\left(-9\right)}}{2\left(-\frac{1}{3}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{3} for a, -\frac{1}{2} for b, and -9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1}{4}-4\left(-\frac{1}{3}\right)\left(-9\right)}}{2\left(-\frac{1}{3}\right)}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1}{4}+\frac{4}{3}\left(-9\right)}}{2\left(-\frac{1}{3}\right)}
Multiply -4 times -\frac{1}{3}.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1}{4}-12}}{2\left(-\frac{1}{3}\right)}
Multiply \frac{4}{3} times -9.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{-\frac{47}{4}}}{2\left(-\frac{1}{3}\right)}
Add \frac{1}{4} to -12.
x=\frac{-\left(-\frac{1}{2}\right)±\frac{\sqrt{47}i}{2}}{2\left(-\frac{1}{3}\right)}
Take the square root of -\frac{47}{4}.
x=\frac{\frac{1}{2}±\frac{\sqrt{47}i}{2}}{2\left(-\frac{1}{3}\right)}
The opposite of -\frac{1}{2} is \frac{1}{2}.
x=\frac{\frac{1}{2}±\frac{\sqrt{47}i}{2}}{-\frac{2}{3}}
Multiply 2 times -\frac{1}{3}.
x=\frac{1+\sqrt{47}i}{-\frac{2}{3}\times 2}
Now solve the equation x=\frac{\frac{1}{2}±\frac{\sqrt{47}i}{2}}{-\frac{2}{3}} when ± is plus. Add \frac{1}{2} to \frac{i\sqrt{47}}{2}.
x=\frac{-3\sqrt{47}i-3}{4}
Divide \frac{1+i\sqrt{47}}{2} by -\frac{2}{3} by multiplying \frac{1+i\sqrt{47}}{2} by the reciprocal of -\frac{2}{3}.
x=\frac{-\sqrt{47}i+1}{-\frac{2}{3}\times 2}
Now solve the equation x=\frac{\frac{1}{2}±\frac{\sqrt{47}i}{2}}{-\frac{2}{3}} when ± is minus. Subtract \frac{i\sqrt{47}}{2} from \frac{1}{2}.
x=\frac{-3+3\sqrt{47}i}{4}
Divide \frac{1-i\sqrt{47}}{2} by -\frac{2}{3} by multiplying \frac{1-i\sqrt{47}}{2} by the reciprocal of -\frac{2}{3}.
x=\frac{-3\sqrt{47}i-3}{4} x=\frac{-3+3\sqrt{47}i}{4}
The equation is now solved.
-\frac{1}{3}x^{2}-\frac{1}{2}x-9=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-\frac{1}{3}x^{2}-\frac{1}{2}x-9-\left(-9\right)=-\left(-9\right)
Add 9 to both sides of the equation.
-\frac{1}{3}x^{2}-\frac{1}{2}x=-\left(-9\right)
Subtracting -9 from itself leaves 0.
-\frac{1}{3}x^{2}-\frac{1}{2}x=9
Subtract -9 from 0.
\frac{-\frac{1}{3}x^{2}-\frac{1}{2}x}{-\frac{1}{3}}=\frac{9}{-\frac{1}{3}}
Multiply both sides by -3.
x^{2}+\left(-\frac{\frac{1}{2}}{-\frac{1}{3}}\right)x=\frac{9}{-\frac{1}{3}}
Dividing by -\frac{1}{3} undoes the multiplication by -\frac{1}{3}.
x^{2}+\frac{3}{2}x=\frac{9}{-\frac{1}{3}}
Divide -\frac{1}{2} by -\frac{1}{3} by multiplying -\frac{1}{2} by the reciprocal of -\frac{1}{3}.
x^{2}+\frac{3}{2}x=-27
Divide 9 by -\frac{1}{3} by multiplying 9 by the reciprocal of -\frac{1}{3}.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=-27+\left(\frac{3}{4}\right)^{2}
Divide \frac{3}{2}, the coefficient of the x term, by 2 to get \frac{3}{4}. Then add the square of \frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{3}{2}x+\frac{9}{16}=-27+\frac{9}{16}
Square \frac{3}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{3}{2}x+\frac{9}{16}=-\frac{423}{16}
Add -27 to \frac{9}{16}.
\left(x+\frac{3}{4}\right)^{2}=-\frac{423}{16}
Factor x^{2}+\frac{3}{2}x+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{-\frac{423}{16}}
Take the square root of both sides of the equation.
x+\frac{3}{4}=\frac{3\sqrt{47}i}{4} x+\frac{3}{4}=-\frac{3\sqrt{47}i}{4}
Simplify.
x=\frac{-3+3\sqrt{47}i}{4} x=\frac{-3\sqrt{47}i-3}{4}
Subtract \frac{3}{4} from both sides of the equation.