Solve for I
I=\frac{4}{15}\approx 0.266666667
Share
Copied to clipboard
-\frac{1}{3}+\frac{3}{5}=I
The opposite of -\frac{3}{5} is \frac{3}{5}.
-\frac{5}{15}+\frac{9}{15}=I
Least common multiple of 3 and 5 is 15. Convert -\frac{1}{3} and \frac{3}{5} to fractions with denominator 15.
\frac{-5+9}{15}=I
Since -\frac{5}{15} and \frac{9}{15} have the same denominator, add them by adding their numerators.
\frac{4}{15}=I
Add -5 and 9 to get 4.
I=\frac{4}{15}
Swap sides so that all variable terms are on the left hand side.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}