Solve for x
x=3
Graph
Share
Copied to clipboard
-\frac{1}{3}\left(-6\right)-\frac{1}{3}\left(-9\right)x+100x-\left(x+1\right)=3\left(33x+4\right)-2
Use the distributive property to multiply -\frac{1}{3} by -6-9x.
\frac{-\left(-6\right)}{3}-\frac{1}{3}\left(-9\right)x+100x-\left(x+1\right)=3\left(33x+4\right)-2
Express -\frac{1}{3}\left(-6\right) as a single fraction.
\frac{6}{3}-\frac{1}{3}\left(-9\right)x+100x-\left(x+1\right)=3\left(33x+4\right)-2
Multiply -1 and -6 to get 6.
2-\frac{1}{3}\left(-9\right)x+100x-\left(x+1\right)=3\left(33x+4\right)-2
Divide 6 by 3 to get 2.
2+\frac{-\left(-9\right)}{3}x+100x-\left(x+1\right)=3\left(33x+4\right)-2
Express -\frac{1}{3}\left(-9\right) as a single fraction.
2+\frac{9}{3}x+100x-\left(x+1\right)=3\left(33x+4\right)-2
Multiply -1 and -9 to get 9.
2+3x+100x-\left(x+1\right)=3\left(33x+4\right)-2
Divide 9 by 3 to get 3.
2+103x-\left(x+1\right)=3\left(33x+4\right)-2
Combine 3x and 100x to get 103x.
2+103x-x-1=3\left(33x+4\right)-2
To find the opposite of x+1, find the opposite of each term.
2+102x-1=3\left(33x+4\right)-2
Combine 103x and -x to get 102x.
1+102x=3\left(33x+4\right)-2
Subtract 1 from 2 to get 1.
1+102x=99x+12-2
Use the distributive property to multiply 3 by 33x+4.
1+102x=99x+10
Subtract 2 from 12 to get 10.
1+102x-99x=10
Subtract 99x from both sides.
1+3x=10
Combine 102x and -99x to get 3x.
3x=10-1
Subtract 1 from both sides.
3x=9
Subtract 1 from 10 to get 9.
x=\frac{9}{3}
Divide both sides by 3.
x=3
Divide 9 by 3 to get 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}