Evaluate
-\frac{46}{243}\approx -0.189300412
Factor
-\frac{46}{243} = -0.18930041152263374
Share
Copied to clipboard
-\frac{1}{3}\times \frac{2}{3}-\left(\frac{2}{3}\right)^{3}\left(-\frac{1}{3}\right)-\frac{2}{9}\times \left(\frac{2}{3}\right)^{3}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{-2}{3\times 3}-\left(\frac{2}{3}\right)^{3}\left(-\frac{1}{3}\right)-\frac{2}{9}\times \left(\frac{2}{3}\right)^{3}
Multiply -\frac{1}{3} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{-2}{9}-\left(\frac{2}{3}\right)^{3}\left(-\frac{1}{3}\right)-\frac{2}{9}\times \left(\frac{2}{3}\right)^{3}
Do the multiplications in the fraction \frac{-2}{3\times 3}.
-\frac{2}{9}-\left(\frac{2}{3}\right)^{3}\left(-\frac{1}{3}\right)-\frac{2}{9}\times \left(\frac{2}{3}\right)^{3}
Fraction \frac{-2}{9} can be rewritten as -\frac{2}{9} by extracting the negative sign.
-\frac{2}{9}-\frac{8}{27}\left(-\frac{1}{3}\right)-\frac{2}{9}\times \left(\frac{2}{3}\right)^{3}
Calculate \frac{2}{3} to the power of 3 and get \frac{8}{27}.
-\frac{2}{9}-\frac{8\left(-1\right)}{27\times 3}-\frac{2}{9}\times \left(\frac{2}{3}\right)^{3}
Multiply \frac{8}{27} times -\frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
-\frac{2}{9}-\frac{-8}{81}-\frac{2}{9}\times \left(\frac{2}{3}\right)^{3}
Do the multiplications in the fraction \frac{8\left(-1\right)}{27\times 3}.
-\frac{2}{9}-\left(-\frac{8}{81}\right)-\frac{2}{9}\times \left(\frac{2}{3}\right)^{3}
Fraction \frac{-8}{81} can be rewritten as -\frac{8}{81} by extracting the negative sign.
-\frac{2}{9}+\frac{8}{81}-\frac{2}{9}\times \left(\frac{2}{3}\right)^{3}
The opposite of -\frac{8}{81} is \frac{8}{81}.
-\frac{18}{81}+\frac{8}{81}-\frac{2}{9}\times \left(\frac{2}{3}\right)^{3}
Least common multiple of 9 and 81 is 81. Convert -\frac{2}{9} and \frac{8}{81} to fractions with denominator 81.
\frac{-18+8}{81}-\frac{2}{9}\times \left(\frac{2}{3}\right)^{3}
Since -\frac{18}{81} and \frac{8}{81} have the same denominator, add them by adding their numerators.
-\frac{10}{81}-\frac{2}{9}\times \left(\frac{2}{3}\right)^{3}
Add -18 and 8 to get -10.
-\frac{10}{81}-\frac{2}{9}\times \frac{8}{27}
Calculate \frac{2}{3} to the power of 3 and get \frac{8}{27}.
-\frac{10}{81}-\frac{2\times 8}{9\times 27}
Multiply \frac{2}{9} times \frac{8}{27} by multiplying numerator times numerator and denominator times denominator.
-\frac{10}{81}-\frac{16}{243}
Do the multiplications in the fraction \frac{2\times 8}{9\times 27}.
-\frac{30}{243}-\frac{16}{243}
Least common multiple of 81 and 243 is 243. Convert -\frac{10}{81} and \frac{16}{243} to fractions with denominator 243.
\frac{-30-16}{243}
Since -\frac{30}{243} and \frac{16}{243} have the same denominator, subtract them by subtracting their numerators.
-\frac{46}{243}
Subtract 16 from -30 to get -46.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}