- \frac { 1 } { 3 } \cdot ( 0,5 + \frac { 2 } { 5 } ) - \frac { 3 } { 4 } =
Evaluate
-1,05
Factor
-1,05
Quiz
5 problems similar to:
- \frac { 1 } { 3 } \cdot ( 0,5 + \frac { 2 } { 5 } ) - \frac { 3 } { 4 } =
Share
Copied to clipboard
-\frac{1}{3}\left(\frac{1}{2}+\frac{2}{5}\right)-\frac{3}{4}
Convert decimal number 0,5 to fraction \frac{5}{10}. Reduce the fraction \frac{5}{10} to lowest terms by extracting and canceling out 5.
-\frac{1}{3}\left(\frac{5}{10}+\frac{4}{10}\right)-\frac{3}{4}
Least common multiple of 2 and 5 is 10. Convert \frac{1}{2} and \frac{2}{5} to fractions with denominator 10.
-\frac{1}{3}\times \frac{5+4}{10}-\frac{3}{4}
Since \frac{5}{10} and \frac{4}{10} have the same denominator, add them by adding their numerators.
-\frac{1}{3}\times \frac{9}{10}-\frac{3}{4}
Add 5 and 4 to get 9.
\frac{-9}{3\times 10}-\frac{3}{4}
Multiply -\frac{1}{3} times \frac{9}{10} by multiplying numerator times numerator and denominator times denominator.
\frac{-9}{30}-\frac{3}{4}
Do the multiplications in the fraction \frac{-9}{3\times 10}.
-\frac{3}{10}-\frac{3}{4}
Reduce the fraction \frac{-9}{30} to lowest terms by extracting and canceling out 3.
-\frac{6}{20}-\frac{15}{20}
Least common multiple of 10 and 4 is 20. Convert -\frac{3}{10} and \frac{3}{4} to fractions with denominator 20.
\frac{-6-15}{20}
Since -\frac{6}{20} and \frac{15}{20} have the same denominator, subtract them by subtracting their numerators.
-\frac{21}{20}
Subtract 15 from -6 to get -21.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}