Solve for x (complex solution)
x=-\frac{\sqrt{190}i}{15}\approx -0-0.918936583i
x=\frac{\sqrt{190}i}{15}\approx 0.918936583i
Graph
Share
Copied to clipboard
-\frac{1}{2}x^{2}\times \frac{1}{2}=\frac{19}{90}
Multiply x and x to get x^{2}.
\frac{-1}{2\times 2}x^{2}=\frac{19}{90}
Multiply -\frac{1}{2} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{-1}{4}x^{2}=\frac{19}{90}
Do the multiplications in the fraction \frac{-1}{2\times 2}.
-\frac{1}{4}x^{2}=\frac{19}{90}
Fraction \frac{-1}{4} can be rewritten as -\frac{1}{4} by extracting the negative sign.
x^{2}=\frac{19}{90}\left(-4\right)
Multiply both sides by -4, the reciprocal of -\frac{1}{4}.
x^{2}=\frac{19\left(-4\right)}{90}
Express \frac{19}{90}\left(-4\right) as a single fraction.
x^{2}=\frac{-76}{90}
Multiply 19 and -4 to get -76.
x^{2}=-\frac{38}{45}
Reduce the fraction \frac{-76}{90} to lowest terms by extracting and canceling out 2.
x=\frac{\sqrt{190}i}{15} x=-\frac{\sqrt{190}i}{15}
The equation is now solved.
-\frac{1}{2}x^{2}\times \frac{1}{2}=\frac{19}{90}
Multiply x and x to get x^{2}.
\frac{-1}{2\times 2}x^{2}=\frac{19}{90}
Multiply -\frac{1}{2} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{-1}{4}x^{2}=\frac{19}{90}
Do the multiplications in the fraction \frac{-1}{2\times 2}.
-\frac{1}{4}x^{2}=\frac{19}{90}
Fraction \frac{-1}{4} can be rewritten as -\frac{1}{4} by extracting the negative sign.
-\frac{1}{4}x^{2}-\frac{19}{90}=0
Subtract \frac{19}{90} from both sides.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{1}{4}\right)\left(-\frac{19}{90}\right)}}{2\left(-\frac{1}{4}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{4} for a, 0 for b, and -\frac{19}{90} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{1}{4}\right)\left(-\frac{19}{90}\right)}}{2\left(-\frac{1}{4}\right)}
Square 0.
x=\frac{0±\sqrt{-\frac{19}{90}}}{2\left(-\frac{1}{4}\right)}
Multiply -4 times -\frac{1}{4}.
x=\frac{0±\frac{\sqrt{190}i}{30}}{2\left(-\frac{1}{4}\right)}
Take the square root of -\frac{19}{90}.
x=\frac{0±\frac{\sqrt{190}i}{30}}{-\frac{1}{2}}
Multiply 2 times -\frac{1}{4}.
x=-\frac{\sqrt{190}i}{15}
Now solve the equation x=\frac{0±\frac{\sqrt{190}i}{30}}{-\frac{1}{2}} when ± is plus.
x=\frac{\sqrt{190}i}{15}
Now solve the equation x=\frac{0±\frac{\sqrt{190}i}{30}}{-\frac{1}{2}} when ± is minus.
x=-\frac{\sqrt{190}i}{15} x=\frac{\sqrt{190}i}{15}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}