Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-\frac{1}{2}x^{2}-\frac{3}{2}x+4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\left(-\frac{3}{2}\right)^{2}-4\left(-\frac{1}{2}\right)\times 4}}{2\left(-\frac{1}{2}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{2} for a, -\frac{3}{2} for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\frac{9}{4}-4\left(-\frac{1}{2}\right)\times 4}}{2\left(-\frac{1}{2}\right)}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\frac{9}{4}+2\times 4}}{2\left(-\frac{1}{2}\right)}
Multiply -4 times -\frac{1}{2}.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\frac{9}{4}+8}}{2\left(-\frac{1}{2}\right)}
Multiply 2 times 4.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\frac{41}{4}}}{2\left(-\frac{1}{2}\right)}
Add \frac{9}{4} to 8.
x=\frac{-\left(-\frac{3}{2}\right)±\frac{\sqrt{41}}{2}}{2\left(-\frac{1}{2}\right)}
Take the square root of \frac{41}{4}.
x=\frac{\frac{3}{2}±\frac{\sqrt{41}}{2}}{2\left(-\frac{1}{2}\right)}
The opposite of -\frac{3}{2} is \frac{3}{2}.
x=\frac{\frac{3}{2}±\frac{\sqrt{41}}{2}}{-1}
Multiply 2 times -\frac{1}{2}.
x=\frac{\sqrt{41}+3}{-2}
Now solve the equation x=\frac{\frac{3}{2}±\frac{\sqrt{41}}{2}}{-1} when ± is plus. Add \frac{3}{2} to \frac{\sqrt{41}}{2}.
x=\frac{-\sqrt{41}-3}{2}
Divide \frac{3+\sqrt{41}}{2} by -1.
x=\frac{3-\sqrt{41}}{-2}
Now solve the equation x=\frac{\frac{3}{2}±\frac{\sqrt{41}}{2}}{-1} when ± is minus. Subtract \frac{\sqrt{41}}{2} from \frac{3}{2}.
x=\frac{\sqrt{41}-3}{2}
Divide \frac{3-\sqrt{41}}{2} by -1.
x=\frac{-\sqrt{41}-3}{2} x=\frac{\sqrt{41}-3}{2}
The equation is now solved.
-\frac{1}{2}x^{2}-\frac{3}{2}x+4=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-\frac{1}{2}x^{2}-\frac{3}{2}x+4-4=-4
Subtract 4 from both sides of the equation.
-\frac{1}{2}x^{2}-\frac{3}{2}x=-4
Subtracting 4 from itself leaves 0.
\frac{-\frac{1}{2}x^{2}-\frac{3}{2}x}{-\frac{1}{2}}=-\frac{4}{-\frac{1}{2}}
Multiply both sides by -2.
x^{2}+\left(-\frac{\frac{3}{2}}{-\frac{1}{2}}\right)x=-\frac{4}{-\frac{1}{2}}
Dividing by -\frac{1}{2} undoes the multiplication by -\frac{1}{2}.
x^{2}+3x=-\frac{4}{-\frac{1}{2}}
Divide -\frac{3}{2} by -\frac{1}{2} by multiplying -\frac{3}{2} by the reciprocal of -\frac{1}{2}.
x^{2}+3x=8
Divide -4 by -\frac{1}{2} by multiplying -4 by the reciprocal of -\frac{1}{2}.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=8+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+3x+\frac{9}{4}=8+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+3x+\frac{9}{4}=\frac{41}{4}
Add 8 to \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=\frac{41}{4}
Factor x^{2}+3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{41}{4}}
Take the square root of both sides of the equation.
x+\frac{3}{2}=\frac{\sqrt{41}}{2} x+\frac{3}{2}=-\frac{\sqrt{41}}{2}
Simplify.
x=\frac{\sqrt{41}-3}{2} x=\frac{-\sqrt{41}-3}{2}
Subtract \frac{3}{2} from both sides of the equation.