Solve for x
x=-4
x=1
Graph
Share
Copied to clipboard
-\frac{1}{2}x^{2}-\frac{3}{2}x+2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\left(-\frac{3}{2}\right)^{2}-4\left(-\frac{1}{2}\right)\times 2}}{2\left(-\frac{1}{2}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{2} for a, -\frac{3}{2} for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\frac{9}{4}-4\left(-\frac{1}{2}\right)\times 2}}{2\left(-\frac{1}{2}\right)}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\frac{9}{4}+2\times 2}}{2\left(-\frac{1}{2}\right)}
Multiply -4 times -\frac{1}{2}.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\frac{9}{4}+4}}{2\left(-\frac{1}{2}\right)}
Multiply 2 times 2.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\frac{25}{4}}}{2\left(-\frac{1}{2}\right)}
Add \frac{9}{4} to 4.
x=\frac{-\left(-\frac{3}{2}\right)±\frac{5}{2}}{2\left(-\frac{1}{2}\right)}
Take the square root of \frac{25}{4}.
x=\frac{\frac{3}{2}±\frac{5}{2}}{2\left(-\frac{1}{2}\right)}
The opposite of -\frac{3}{2} is \frac{3}{2}.
x=\frac{\frac{3}{2}±\frac{5}{2}}{-1}
Multiply 2 times -\frac{1}{2}.
x=\frac{4}{-1}
Now solve the equation x=\frac{\frac{3}{2}±\frac{5}{2}}{-1} when ± is plus. Add \frac{3}{2} to \frac{5}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-4
Divide 4 by -1.
x=-\frac{1}{-1}
Now solve the equation x=\frac{\frac{3}{2}±\frac{5}{2}}{-1} when ± is minus. Subtract \frac{5}{2} from \frac{3}{2} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=1
Divide -1 by -1.
x=-4 x=1
The equation is now solved.
-\frac{1}{2}x^{2}-\frac{3}{2}x+2=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-\frac{1}{2}x^{2}-\frac{3}{2}x+2-2=-2
Subtract 2 from both sides of the equation.
-\frac{1}{2}x^{2}-\frac{3}{2}x=-2
Subtracting 2 from itself leaves 0.
\frac{-\frac{1}{2}x^{2}-\frac{3}{2}x}{-\frac{1}{2}}=-\frac{2}{-\frac{1}{2}}
Multiply both sides by -2.
x^{2}+\left(-\frac{\frac{3}{2}}{-\frac{1}{2}}\right)x=-\frac{2}{-\frac{1}{2}}
Dividing by -\frac{1}{2} undoes the multiplication by -\frac{1}{2}.
x^{2}+3x=-\frac{2}{-\frac{1}{2}}
Divide -\frac{3}{2} by -\frac{1}{2} by multiplying -\frac{3}{2} by the reciprocal of -\frac{1}{2}.
x^{2}+3x=4
Divide -2 by -\frac{1}{2} by multiplying -2 by the reciprocal of -\frac{1}{2}.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=4+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+3x+\frac{9}{4}=4+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+3x+\frac{9}{4}=\frac{25}{4}
Add 4 to \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=\frac{25}{4}
Factor x^{2}+3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Take the square root of both sides of the equation.
x+\frac{3}{2}=\frac{5}{2} x+\frac{3}{2}=-\frac{5}{2}
Simplify.
x=1 x=-4
Subtract \frac{3}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}