Solve for x
x=-2
x=4
Graph
Share
Copied to clipboard
-\frac{1}{2}x^{2}+x+4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1±\sqrt{1^{2}-4\left(-\frac{1}{2}\right)\times 4}}{2\left(-\frac{1}{2}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{2} for a, 1 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-\frac{1}{2}\right)\times 4}}{2\left(-\frac{1}{2}\right)}
Square 1.
x=\frac{-1±\sqrt{1+2\times 4}}{2\left(-\frac{1}{2}\right)}
Multiply -4 times -\frac{1}{2}.
x=\frac{-1±\sqrt{1+8}}{2\left(-\frac{1}{2}\right)}
Multiply 2 times 4.
x=\frac{-1±\sqrt{9}}{2\left(-\frac{1}{2}\right)}
Add 1 to 8.
x=\frac{-1±3}{2\left(-\frac{1}{2}\right)}
Take the square root of 9.
x=\frac{-1±3}{-1}
Multiply 2 times -\frac{1}{2}.
x=\frac{2}{-1}
Now solve the equation x=\frac{-1±3}{-1} when ± is plus. Add -1 to 3.
x=-2
Divide 2 by -1.
x=-\frac{4}{-1}
Now solve the equation x=\frac{-1±3}{-1} when ± is minus. Subtract 3 from -1.
x=4
Divide -4 by -1.
x=-2 x=4
The equation is now solved.
-\frac{1}{2}x^{2}+x+4=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-\frac{1}{2}x^{2}+x+4-4=-4
Subtract 4 from both sides of the equation.
-\frac{1}{2}x^{2}+x=-4
Subtracting 4 from itself leaves 0.
\frac{-\frac{1}{2}x^{2}+x}{-\frac{1}{2}}=-\frac{4}{-\frac{1}{2}}
Multiply both sides by -2.
x^{2}+\frac{1}{-\frac{1}{2}}x=-\frac{4}{-\frac{1}{2}}
Dividing by -\frac{1}{2} undoes the multiplication by -\frac{1}{2}.
x^{2}-2x=-\frac{4}{-\frac{1}{2}}
Divide 1 by -\frac{1}{2} by multiplying 1 by the reciprocal of -\frac{1}{2}.
x^{2}-2x=8
Divide -4 by -\frac{1}{2} by multiplying -4 by the reciprocal of -\frac{1}{2}.
x^{2}-2x+1=8+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=9
Add 8 to 1.
\left(x-1\right)^{2}=9
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{9}
Take the square root of both sides of the equation.
x-1=3 x-1=-3
Simplify.
x=4 x=-2
Add 1 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}