Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-\frac{1}{2}x^{2}+x+\frac{3}{2}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1±\sqrt{1^{2}-4\left(-\frac{1}{2}\right)\times \frac{3}{2}}}{2\left(-\frac{1}{2}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{2} for a, 1 for b, and \frac{3}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-\frac{1}{2}\right)\times \frac{3}{2}}}{2\left(-\frac{1}{2}\right)}
Square 1.
x=\frac{-1±\sqrt{1+2\times \frac{3}{2}}}{2\left(-\frac{1}{2}\right)}
Multiply -4 times -\frac{1}{2}.
x=\frac{-1±\sqrt{1+3}}{2\left(-\frac{1}{2}\right)}
Multiply 2 times \frac{3}{2}.
x=\frac{-1±\sqrt{4}}{2\left(-\frac{1}{2}\right)}
Add 1 to 3.
x=\frac{-1±2}{2\left(-\frac{1}{2}\right)}
Take the square root of 4.
x=\frac{-1±2}{-1}
Multiply 2 times -\frac{1}{2}.
x=\frac{1}{-1}
Now solve the equation x=\frac{-1±2}{-1} when ± is plus. Add -1 to 2.
x=-1
Divide 1 by -1.
x=-\frac{3}{-1}
Now solve the equation x=\frac{-1±2}{-1} when ± is minus. Subtract 2 from -1.
x=3
Divide -3 by -1.
x=-1 x=3
The equation is now solved.
-\frac{1}{2}x^{2}+x+\frac{3}{2}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-\frac{1}{2}x^{2}+x+\frac{3}{2}-\frac{3}{2}=-\frac{3}{2}
Subtract \frac{3}{2} from both sides of the equation.
-\frac{1}{2}x^{2}+x=-\frac{3}{2}
Subtracting \frac{3}{2} from itself leaves 0.
\frac{-\frac{1}{2}x^{2}+x}{-\frac{1}{2}}=-\frac{\frac{3}{2}}{-\frac{1}{2}}
Multiply both sides by -2.
x^{2}+\frac{1}{-\frac{1}{2}}x=-\frac{\frac{3}{2}}{-\frac{1}{2}}
Dividing by -\frac{1}{2} undoes the multiplication by -\frac{1}{2}.
x^{2}-2x=-\frac{\frac{3}{2}}{-\frac{1}{2}}
Divide 1 by -\frac{1}{2} by multiplying 1 by the reciprocal of -\frac{1}{2}.
x^{2}-2x=3
Divide -\frac{3}{2} by -\frac{1}{2} by multiplying -\frac{3}{2} by the reciprocal of -\frac{1}{2}.
x^{2}-2x+1=3+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=4
Add 3 to 1.
\left(x-1\right)^{2}=4
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{4}
Take the square root of both sides of the equation.
x-1=2 x-1=-2
Simplify.
x=3 x=-1
Add 1 to both sides of the equation.