Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-\frac{1}{2}x^{2}+2x+\frac{5}{2}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2±\sqrt{2^{2}-4\left(-\frac{1}{2}\right)\times \frac{5}{2}}}{2\left(-\frac{1}{2}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{2} for a, 2 for b, and \frac{5}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-\frac{1}{2}\right)\times \frac{5}{2}}}{2\left(-\frac{1}{2}\right)}
Square 2.
x=\frac{-2±\sqrt{4+2\times \frac{5}{2}}}{2\left(-\frac{1}{2}\right)}
Multiply -4 times -\frac{1}{2}.
x=\frac{-2±\sqrt{4+5}}{2\left(-\frac{1}{2}\right)}
Multiply 2 times \frac{5}{2}.
x=\frac{-2±\sqrt{9}}{2\left(-\frac{1}{2}\right)}
Add 4 to 5.
x=\frac{-2±3}{2\left(-\frac{1}{2}\right)}
Take the square root of 9.
x=\frac{-2±3}{-1}
Multiply 2 times -\frac{1}{2}.
x=\frac{1}{-1}
Now solve the equation x=\frac{-2±3}{-1} when ± is plus. Add -2 to 3.
x=-1
Divide 1 by -1.
x=-\frac{5}{-1}
Now solve the equation x=\frac{-2±3}{-1} when ± is minus. Subtract 3 from -2.
x=5
Divide -5 by -1.
x=-1 x=5
The equation is now solved.
-\frac{1}{2}x^{2}+2x+\frac{5}{2}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-\frac{1}{2}x^{2}+2x+\frac{5}{2}-\frac{5}{2}=-\frac{5}{2}
Subtract \frac{5}{2} from both sides of the equation.
-\frac{1}{2}x^{2}+2x=-\frac{5}{2}
Subtracting \frac{5}{2} from itself leaves 0.
\frac{-\frac{1}{2}x^{2}+2x}{-\frac{1}{2}}=-\frac{\frac{5}{2}}{-\frac{1}{2}}
Multiply both sides by -2.
x^{2}+\frac{2}{-\frac{1}{2}}x=-\frac{\frac{5}{2}}{-\frac{1}{2}}
Dividing by -\frac{1}{2} undoes the multiplication by -\frac{1}{2}.
x^{2}-4x=-\frac{\frac{5}{2}}{-\frac{1}{2}}
Divide 2 by -\frac{1}{2} by multiplying 2 by the reciprocal of -\frac{1}{2}.
x^{2}-4x=5
Divide -\frac{5}{2} by -\frac{1}{2} by multiplying -\frac{5}{2} by the reciprocal of -\frac{1}{2}.
x^{2}-4x+\left(-2\right)^{2}=5+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=5+4
Square -2.
x^{2}-4x+4=9
Add 5 to 4.
\left(x-2\right)^{2}=9
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{9}
Take the square root of both sides of the equation.
x-2=3 x-2=-3
Simplify.
x=5 x=-1
Add 2 to both sides of the equation.