Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-\frac{1}{2}x^{2}+\frac{9}{5}x+1=2
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-\frac{1}{2}x^{2}+\frac{9}{5}x+1-2=2-2
Subtract 2 from both sides of the equation.
-\frac{1}{2}x^{2}+\frac{9}{5}x+1-2=0
Subtracting 2 from itself leaves 0.
-\frac{1}{2}x^{2}+\frac{9}{5}x-1=0
Subtract 2 from 1.
x=\frac{-\frac{9}{5}±\sqrt{\left(\frac{9}{5}\right)^{2}-4\left(-\frac{1}{2}\right)\left(-1\right)}}{2\left(-\frac{1}{2}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{2} for a, \frac{9}{5} for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{9}{5}±\sqrt{\frac{81}{25}-4\left(-\frac{1}{2}\right)\left(-1\right)}}{2\left(-\frac{1}{2}\right)}
Square \frac{9}{5} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{9}{5}±\sqrt{\frac{81}{25}+2\left(-1\right)}}{2\left(-\frac{1}{2}\right)}
Multiply -4 times -\frac{1}{2}.
x=\frac{-\frac{9}{5}±\sqrt{\frac{81}{25}-2}}{2\left(-\frac{1}{2}\right)}
Multiply 2 times -1.
x=\frac{-\frac{9}{5}±\sqrt{\frac{31}{25}}}{2\left(-\frac{1}{2}\right)}
Add \frac{81}{25} to -2.
x=\frac{-\frac{9}{5}±\frac{\sqrt{31}}{5}}{2\left(-\frac{1}{2}\right)}
Take the square root of \frac{31}{25}.
x=\frac{-\frac{9}{5}±\frac{\sqrt{31}}{5}}{-1}
Multiply 2 times -\frac{1}{2}.
x=\frac{\sqrt{31}-9}{-5}
Now solve the equation x=\frac{-\frac{9}{5}±\frac{\sqrt{31}}{5}}{-1} when ± is plus. Add -\frac{9}{5} to \frac{\sqrt{31}}{5}.
x=\frac{9-\sqrt{31}}{5}
Divide \frac{-9+\sqrt{31}}{5} by -1.
x=\frac{-\sqrt{31}-9}{-5}
Now solve the equation x=\frac{-\frac{9}{5}±\frac{\sqrt{31}}{5}}{-1} when ± is minus. Subtract \frac{\sqrt{31}}{5} from -\frac{9}{5}.
x=\frac{\sqrt{31}+9}{5}
Divide \frac{-9-\sqrt{31}}{5} by -1.
x=\frac{9-\sqrt{31}}{5} x=\frac{\sqrt{31}+9}{5}
The equation is now solved.
-\frac{1}{2}x^{2}+\frac{9}{5}x+1=2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-\frac{1}{2}x^{2}+\frac{9}{5}x+1-1=2-1
Subtract 1 from both sides of the equation.
-\frac{1}{2}x^{2}+\frac{9}{5}x=2-1
Subtracting 1 from itself leaves 0.
-\frac{1}{2}x^{2}+\frac{9}{5}x=1
Subtract 1 from 2.
\frac{-\frac{1}{2}x^{2}+\frac{9}{5}x}{-\frac{1}{2}}=\frac{1}{-\frac{1}{2}}
Multiply both sides by -2.
x^{2}+\frac{\frac{9}{5}}{-\frac{1}{2}}x=\frac{1}{-\frac{1}{2}}
Dividing by -\frac{1}{2} undoes the multiplication by -\frac{1}{2}.
x^{2}-\frac{18}{5}x=\frac{1}{-\frac{1}{2}}
Divide \frac{9}{5} by -\frac{1}{2} by multiplying \frac{9}{5} by the reciprocal of -\frac{1}{2}.
x^{2}-\frac{18}{5}x=-2
Divide 1 by -\frac{1}{2} by multiplying 1 by the reciprocal of -\frac{1}{2}.
x^{2}-\frac{18}{5}x+\left(-\frac{9}{5}\right)^{2}=-2+\left(-\frac{9}{5}\right)^{2}
Divide -\frac{18}{5}, the coefficient of the x term, by 2 to get -\frac{9}{5}. Then add the square of -\frac{9}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{18}{5}x+\frac{81}{25}=-2+\frac{81}{25}
Square -\frac{9}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{18}{5}x+\frac{81}{25}=\frac{31}{25}
Add -2 to \frac{81}{25}.
\left(x-\frac{9}{5}\right)^{2}=\frac{31}{25}
Factor x^{2}-\frac{18}{5}x+\frac{81}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{5}\right)^{2}}=\sqrt{\frac{31}{25}}
Take the square root of both sides of the equation.
x-\frac{9}{5}=\frac{\sqrt{31}}{5} x-\frac{9}{5}=-\frac{\sqrt{31}}{5}
Simplify.
x=\frac{\sqrt{31}+9}{5} x=\frac{9-\sqrt{31}}{5}
Add \frac{9}{5} to both sides of the equation.