Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-\frac{1}{2}x^{2}+\frac{8}{3}x-3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{8}{3}±\sqrt{\left(\frac{8}{3}\right)^{2}-4\left(-\frac{1}{2}\right)\left(-3\right)}}{2\left(-\frac{1}{2}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{2} for a, \frac{8}{3} for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{8}{3}±\sqrt{\frac{64}{9}-4\left(-\frac{1}{2}\right)\left(-3\right)}}{2\left(-\frac{1}{2}\right)}
Square \frac{8}{3} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{8}{3}±\sqrt{\frac{64}{9}+2\left(-3\right)}}{2\left(-\frac{1}{2}\right)}
Multiply -4 times -\frac{1}{2}.
x=\frac{-\frac{8}{3}±\sqrt{\frac{64}{9}-6}}{2\left(-\frac{1}{2}\right)}
Multiply 2 times -3.
x=\frac{-\frac{8}{3}±\sqrt{\frac{10}{9}}}{2\left(-\frac{1}{2}\right)}
Add \frac{64}{9} to -6.
x=\frac{-\frac{8}{3}±\frac{\sqrt{10}}{3}}{2\left(-\frac{1}{2}\right)}
Take the square root of \frac{10}{9}.
x=\frac{-\frac{8}{3}±\frac{\sqrt{10}}{3}}{-1}
Multiply 2 times -\frac{1}{2}.
x=\frac{\sqrt{10}-8}{-3}
Now solve the equation x=\frac{-\frac{8}{3}±\frac{\sqrt{10}}{3}}{-1} when ± is plus. Add -\frac{8}{3} to \frac{\sqrt{10}}{3}.
x=\frac{8-\sqrt{10}}{3}
Divide \frac{-8+\sqrt{10}}{3} by -1.
x=\frac{-\sqrt{10}-8}{-3}
Now solve the equation x=\frac{-\frac{8}{3}±\frac{\sqrt{10}}{3}}{-1} when ± is minus. Subtract \frac{\sqrt{10}}{3} from -\frac{8}{3}.
x=\frac{\sqrt{10}+8}{3}
Divide \frac{-8-\sqrt{10}}{3} by -1.
x=\frac{8-\sqrt{10}}{3} x=\frac{\sqrt{10}+8}{3}
The equation is now solved.
-\frac{1}{2}x^{2}+\frac{8}{3}x-3=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-\frac{1}{2}x^{2}+\frac{8}{3}x-3-\left(-3\right)=-\left(-3\right)
Add 3 to both sides of the equation.
-\frac{1}{2}x^{2}+\frac{8}{3}x=-\left(-3\right)
Subtracting -3 from itself leaves 0.
-\frac{1}{2}x^{2}+\frac{8}{3}x=3
Subtract -3 from 0.
\frac{-\frac{1}{2}x^{2}+\frac{8}{3}x}{-\frac{1}{2}}=\frac{3}{-\frac{1}{2}}
Multiply both sides by -2.
x^{2}+\frac{\frac{8}{3}}{-\frac{1}{2}}x=\frac{3}{-\frac{1}{2}}
Dividing by -\frac{1}{2} undoes the multiplication by -\frac{1}{2}.
x^{2}-\frac{16}{3}x=\frac{3}{-\frac{1}{2}}
Divide \frac{8}{3} by -\frac{1}{2} by multiplying \frac{8}{3} by the reciprocal of -\frac{1}{2}.
x^{2}-\frac{16}{3}x=-6
Divide 3 by -\frac{1}{2} by multiplying 3 by the reciprocal of -\frac{1}{2}.
x^{2}-\frac{16}{3}x+\left(-\frac{8}{3}\right)^{2}=-6+\left(-\frac{8}{3}\right)^{2}
Divide -\frac{16}{3}, the coefficient of the x term, by 2 to get -\frac{8}{3}. Then add the square of -\frac{8}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{16}{3}x+\frac{64}{9}=-6+\frac{64}{9}
Square -\frac{8}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{16}{3}x+\frac{64}{9}=\frac{10}{9}
Add -6 to \frac{64}{9}.
\left(x-\frac{8}{3}\right)^{2}=\frac{10}{9}
Factor x^{2}-\frac{16}{3}x+\frac{64}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{8}{3}\right)^{2}}=\sqrt{\frac{10}{9}}
Take the square root of both sides of the equation.
x-\frac{8}{3}=\frac{\sqrt{10}}{3} x-\frac{8}{3}=-\frac{\sqrt{10}}{3}
Simplify.
x=\frac{\sqrt{10}+8}{3} x=\frac{8-\sqrt{10}}{3}
Add \frac{8}{3} to both sides of the equation.