Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-\frac{1}{2}x^{2}+\frac{3}{2}x+2-\frac{1}{2}x=2
Subtract \frac{1}{2}x from both sides.
-\frac{1}{2}x^{2}+x+2=2
Combine \frac{3}{2}x and -\frac{1}{2}x to get x.
-\frac{1}{2}x^{2}+x+2-2=0
Subtract 2 from both sides.
-\frac{1}{2}x^{2}+x=0
Subtract 2 from 2 to get 0.
x\left(-\frac{1}{2}x+1\right)=0
Factor out x.
x=0 x=2
To find equation solutions, solve x=0 and -\frac{x}{2}+1=0.
-\frac{1}{2}x^{2}+\frac{3}{2}x+2-\frac{1}{2}x=2
Subtract \frac{1}{2}x from both sides.
-\frac{1}{2}x^{2}+x+2=2
Combine \frac{3}{2}x and -\frac{1}{2}x to get x.
-\frac{1}{2}x^{2}+x+2-2=0
Subtract 2 from both sides.
-\frac{1}{2}x^{2}+x=0
Subtract 2 from 2 to get 0.
x=\frac{-1±\sqrt{1^{2}}}{2\left(-\frac{1}{2}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{2} for a, 1 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±1}{2\left(-\frac{1}{2}\right)}
Take the square root of 1^{2}.
x=\frac{-1±1}{-1}
Multiply 2 times -\frac{1}{2}.
x=\frac{0}{-1}
Now solve the equation x=\frac{-1±1}{-1} when ± is plus. Add -1 to 1.
x=0
Divide 0 by -1.
x=-\frac{2}{-1}
Now solve the equation x=\frac{-1±1}{-1} when ± is minus. Subtract 1 from -1.
x=2
Divide -2 by -1.
x=0 x=2
The equation is now solved.
-\frac{1}{2}x^{2}+\frac{3}{2}x+2-\frac{1}{2}x=2
Subtract \frac{1}{2}x from both sides.
-\frac{1}{2}x^{2}+x+2=2
Combine \frac{3}{2}x and -\frac{1}{2}x to get x.
-\frac{1}{2}x^{2}+x=2-2
Subtract 2 from both sides.
-\frac{1}{2}x^{2}+x=0
Subtract 2 from 2 to get 0.
\frac{-\frac{1}{2}x^{2}+x}{-\frac{1}{2}}=\frac{0}{-\frac{1}{2}}
Multiply both sides by -2.
x^{2}+\frac{1}{-\frac{1}{2}}x=\frac{0}{-\frac{1}{2}}
Dividing by -\frac{1}{2} undoes the multiplication by -\frac{1}{2}.
x^{2}-2x=\frac{0}{-\frac{1}{2}}
Divide 1 by -\frac{1}{2} by multiplying 1 by the reciprocal of -\frac{1}{2}.
x^{2}-2x=0
Divide 0 by -\frac{1}{2} by multiplying 0 by the reciprocal of -\frac{1}{2}.
x^{2}-2x+1=1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
\left(x-1\right)^{2}=1
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
x-1=1 x-1=-1
Simplify.
x=2 x=0
Add 1 to both sides of the equation.