Solve for x
x = \frac{\sqrt{17} + 7}{4} \approx 2.780776406
x=\frac{7-\sqrt{17}}{4}\approx 0.719223594
Graph
Share
Copied to clipboard
-\frac{1}{2}x^{2}+\frac{7}{4}x+2-1=2
Combine \frac{3}{2}x and \frac{1}{4}x to get \frac{7}{4}x.
-\frac{1}{2}x^{2}+\frac{7}{4}x+1=2
Subtract 1 from 2 to get 1.
-\frac{1}{2}x^{2}+\frac{7}{4}x+1-2=0
Subtract 2 from both sides.
-\frac{1}{2}x^{2}+\frac{7}{4}x-1=0
Subtract 2 from 1 to get -1.
x=\frac{-\frac{7}{4}±\sqrt{\left(\frac{7}{4}\right)^{2}-4\left(-\frac{1}{2}\right)\left(-1\right)}}{2\left(-\frac{1}{2}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{2} for a, \frac{7}{4} for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{7}{4}±\sqrt{\frac{49}{16}-4\left(-\frac{1}{2}\right)\left(-1\right)}}{2\left(-\frac{1}{2}\right)}
Square \frac{7}{4} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{7}{4}±\sqrt{\frac{49}{16}+2\left(-1\right)}}{2\left(-\frac{1}{2}\right)}
Multiply -4 times -\frac{1}{2}.
x=\frac{-\frac{7}{4}±\sqrt{\frac{49}{16}-2}}{2\left(-\frac{1}{2}\right)}
Multiply 2 times -1.
x=\frac{-\frac{7}{4}±\sqrt{\frac{17}{16}}}{2\left(-\frac{1}{2}\right)}
Add \frac{49}{16} to -2.
x=\frac{-\frac{7}{4}±\frac{\sqrt{17}}{4}}{2\left(-\frac{1}{2}\right)}
Take the square root of \frac{17}{16}.
x=\frac{-\frac{7}{4}±\frac{\sqrt{17}}{4}}{-1}
Multiply 2 times -\frac{1}{2}.
x=\frac{\sqrt{17}-7}{-4}
Now solve the equation x=\frac{-\frac{7}{4}±\frac{\sqrt{17}}{4}}{-1} when ± is plus. Add -\frac{7}{4} to \frac{\sqrt{17}}{4}.
x=\frac{7-\sqrt{17}}{4}
Divide \frac{-7+\sqrt{17}}{4} by -1.
x=\frac{-\sqrt{17}-7}{-4}
Now solve the equation x=\frac{-\frac{7}{4}±\frac{\sqrt{17}}{4}}{-1} when ± is minus. Subtract \frac{\sqrt{17}}{4} from -\frac{7}{4}.
x=\frac{\sqrt{17}+7}{4}
Divide \frac{-7-\sqrt{17}}{4} by -1.
x=\frac{7-\sqrt{17}}{4} x=\frac{\sqrt{17}+7}{4}
The equation is now solved.
-\frac{1}{2}x^{2}+\frac{7}{4}x+2-1=2
Combine \frac{3}{2}x and \frac{1}{4}x to get \frac{7}{4}x.
-\frac{1}{2}x^{2}+\frac{7}{4}x+1=2
Subtract 1 from 2 to get 1.
-\frac{1}{2}x^{2}+\frac{7}{4}x=2-1
Subtract 1 from both sides.
-\frac{1}{2}x^{2}+\frac{7}{4}x=1
Subtract 1 from 2 to get 1.
\frac{-\frac{1}{2}x^{2}+\frac{7}{4}x}{-\frac{1}{2}}=\frac{1}{-\frac{1}{2}}
Multiply both sides by -2.
x^{2}+\frac{\frac{7}{4}}{-\frac{1}{2}}x=\frac{1}{-\frac{1}{2}}
Dividing by -\frac{1}{2} undoes the multiplication by -\frac{1}{2}.
x^{2}-\frac{7}{2}x=\frac{1}{-\frac{1}{2}}
Divide \frac{7}{4} by -\frac{1}{2} by multiplying \frac{7}{4} by the reciprocal of -\frac{1}{2}.
x^{2}-\frac{7}{2}x=-2
Divide 1 by -\frac{1}{2} by multiplying 1 by the reciprocal of -\frac{1}{2}.
x^{2}-\frac{7}{2}x+\left(-\frac{7}{4}\right)^{2}=-2+\left(-\frac{7}{4}\right)^{2}
Divide -\frac{7}{2}, the coefficient of the x term, by 2 to get -\frac{7}{4}. Then add the square of -\frac{7}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{7}{2}x+\frac{49}{16}=-2+\frac{49}{16}
Square -\frac{7}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{7}{2}x+\frac{49}{16}=\frac{17}{16}
Add -2 to \frac{49}{16}.
\left(x-\frac{7}{4}\right)^{2}=\frac{17}{16}
Factor x^{2}-\frac{7}{2}x+\frac{49}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{4}\right)^{2}}=\sqrt{\frac{17}{16}}
Take the square root of both sides of the equation.
x-\frac{7}{4}=\frac{\sqrt{17}}{4} x-\frac{7}{4}=-\frac{\sqrt{17}}{4}
Simplify.
x=\frac{\sqrt{17}+7}{4} x=\frac{7-\sqrt{17}}{4}
Add \frac{7}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}