Solve for x
x = \frac{\sqrt{33} + 1}{4} \approx 1.686140662
x=\frac{1-\sqrt{33}}{4}\approx -1.186140662
Graph
Quiz
Quadratic Equation
5 problems similar to:
- \frac { 1 } { 2 } x ^ { 2 } + \frac { 1 } { 4 } x + 1 = 0
Share
Copied to clipboard
-\frac{1}{2}x^{2}+\frac{1}{4}x+1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{1}{4}±\sqrt{\left(\frac{1}{4}\right)^{2}-4\left(-\frac{1}{2}\right)}}{2\left(-\frac{1}{2}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{2} for a, \frac{1}{4} for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{1}{4}±\sqrt{\frac{1}{16}-4\left(-\frac{1}{2}\right)}}{2\left(-\frac{1}{2}\right)}
Square \frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{1}{4}±\sqrt{\frac{1}{16}+2}}{2\left(-\frac{1}{2}\right)}
Multiply -4 times -\frac{1}{2}.
x=\frac{-\frac{1}{4}±\sqrt{\frac{33}{16}}}{2\left(-\frac{1}{2}\right)}
Add \frac{1}{16} to 2.
x=\frac{-\frac{1}{4}±\frac{\sqrt{33}}{4}}{2\left(-\frac{1}{2}\right)}
Take the square root of \frac{33}{16}.
x=\frac{-\frac{1}{4}±\frac{\sqrt{33}}{4}}{-1}
Multiply 2 times -\frac{1}{2}.
x=\frac{\sqrt{33}-1}{-4}
Now solve the equation x=\frac{-\frac{1}{4}±\frac{\sqrt{33}}{4}}{-1} when ± is plus. Add -\frac{1}{4} to \frac{\sqrt{33}}{4}.
x=\frac{1-\sqrt{33}}{4}
Divide \frac{-1+\sqrt{33}}{4} by -1.
x=\frac{-\sqrt{33}-1}{-4}
Now solve the equation x=\frac{-\frac{1}{4}±\frac{\sqrt{33}}{4}}{-1} when ± is minus. Subtract \frac{\sqrt{33}}{4} from -\frac{1}{4}.
x=\frac{\sqrt{33}+1}{4}
Divide \frac{-1-\sqrt{33}}{4} by -1.
x=\frac{1-\sqrt{33}}{4} x=\frac{\sqrt{33}+1}{4}
The equation is now solved.
-\frac{1}{2}x^{2}+\frac{1}{4}x+1=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-\frac{1}{2}x^{2}+\frac{1}{4}x+1-1=-1
Subtract 1 from both sides of the equation.
-\frac{1}{2}x^{2}+\frac{1}{4}x=-1
Subtracting 1 from itself leaves 0.
\frac{-\frac{1}{2}x^{2}+\frac{1}{4}x}{-\frac{1}{2}}=-\frac{1}{-\frac{1}{2}}
Multiply both sides by -2.
x^{2}+\frac{\frac{1}{4}}{-\frac{1}{2}}x=-\frac{1}{-\frac{1}{2}}
Dividing by -\frac{1}{2} undoes the multiplication by -\frac{1}{2}.
x^{2}-\frac{1}{2}x=-\frac{1}{-\frac{1}{2}}
Divide \frac{1}{4} by -\frac{1}{2} by multiplying \frac{1}{4} by the reciprocal of -\frac{1}{2}.
x^{2}-\frac{1}{2}x=2
Divide -1 by -\frac{1}{2} by multiplying -1 by the reciprocal of -\frac{1}{2}.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=2+\left(-\frac{1}{4}\right)^{2}
Divide -\frac{1}{2}, the coefficient of the x term, by 2 to get -\frac{1}{4}. Then add the square of -\frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{2}x+\frac{1}{16}=2+\frac{1}{16}
Square -\frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{33}{16}
Add 2 to \frac{1}{16}.
\left(x-\frac{1}{4}\right)^{2}=\frac{33}{16}
Factor x^{2}-\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{33}{16}}
Take the square root of both sides of the equation.
x-\frac{1}{4}=\frac{\sqrt{33}}{4} x-\frac{1}{4}=-\frac{\sqrt{33}}{4}
Simplify.
x=\frac{\sqrt{33}+1}{4} x=\frac{1-\sqrt{33}}{4}
Add \frac{1}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}