Solve for v
v=\frac{5x}{162}
Solve for x
x=\frac{162v}{5}
Graph
Share
Copied to clipboard
\frac{1}{2}x=16.2v
Combine -\frac{1}{2}x and x to get \frac{1}{2}x.
16.2v=\frac{1}{2}x
Swap sides so that all variable terms are on the left hand side.
16.2v=\frac{x}{2}
The equation is in standard form.
\frac{16.2v}{16.2}=\frac{x}{2\times 16.2}
Divide both sides of the equation by 16.2, which is the same as multiplying both sides by the reciprocal of the fraction.
v=\frac{x}{2\times 16.2}
Dividing by 16.2 undoes the multiplication by 16.2.
v=\frac{5x}{162}
Divide \frac{x}{2} by 16.2 by multiplying \frac{x}{2} by the reciprocal of 16.2.
\frac{1}{2}x=16.2v
Combine -\frac{1}{2}x and x to get \frac{1}{2}x.
\frac{1}{2}x=\frac{81v}{5}
The equation is in standard form.
\frac{\frac{1}{2}x}{\frac{1}{2}}=\frac{81v}{\frac{1}{2}\times 5}
Multiply both sides by 2.
x=\frac{81v}{\frac{1}{2}\times 5}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
x=\frac{162v}{5}
Divide \frac{81v}{5} by \frac{1}{2} by multiplying \frac{81v}{5} by the reciprocal of \frac{1}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}