Solve for x
x=-2
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
Graph
Share
Copied to clipboard
-\frac{1}{2}x+3-x^{2}=0
Subtract x^{2} from both sides.
-x^{2}-\frac{1}{2}x+3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\left(-\frac{1}{2}\right)^{2}-4\left(-1\right)\times 3}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -\frac{1}{2} for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1}{4}-4\left(-1\right)\times 3}}{2\left(-1\right)}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1}{4}+4\times 3}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1}{4}+12}}{2\left(-1\right)}
Multiply 4 times 3.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{49}{4}}}{2\left(-1\right)}
Add \frac{1}{4} to 12.
x=\frac{-\left(-\frac{1}{2}\right)±\frac{7}{2}}{2\left(-1\right)}
Take the square root of \frac{49}{4}.
x=\frac{\frac{1}{2}±\frac{7}{2}}{2\left(-1\right)}
The opposite of -\frac{1}{2} is \frac{1}{2}.
x=\frac{\frac{1}{2}±\frac{7}{2}}{-2}
Multiply 2 times -1.
x=\frac{4}{-2}
Now solve the equation x=\frac{\frac{1}{2}±\frac{7}{2}}{-2} when ± is plus. Add \frac{1}{2} to \frac{7}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-2
Divide 4 by -2.
x=-\frac{3}{-2}
Now solve the equation x=\frac{\frac{1}{2}±\frac{7}{2}}{-2} when ± is minus. Subtract \frac{7}{2} from \frac{1}{2} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{3}{2}
Divide -3 by -2.
x=-2 x=\frac{3}{2}
The equation is now solved.
-\frac{1}{2}x+3-x^{2}=0
Subtract x^{2} from both sides.
-\frac{1}{2}x-x^{2}=-3
Subtract 3 from both sides. Anything subtracted from zero gives its negation.
-x^{2}-\frac{1}{2}x=-3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}-\frac{1}{2}x}{-1}=-\frac{3}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{\frac{1}{2}}{-1}\right)x=-\frac{3}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+\frac{1}{2}x=-\frac{3}{-1}
Divide -\frac{1}{2} by -1.
x^{2}+\frac{1}{2}x=3
Divide -3 by -1.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=3+\left(\frac{1}{4}\right)^{2}
Divide \frac{1}{2}, the coefficient of the x term, by 2 to get \frac{1}{4}. Then add the square of \frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{2}x+\frac{1}{16}=3+\frac{1}{16}
Square \frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{49}{16}
Add 3 to \frac{1}{16}.
\left(x+\frac{1}{4}\right)^{2}=\frac{49}{16}
Factor x^{2}+\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Take the square root of both sides of the equation.
x+\frac{1}{4}=\frac{7}{4} x+\frac{1}{4}=-\frac{7}{4}
Simplify.
x=\frac{3}{2} x=-2
Subtract \frac{1}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}