Solve for x
x=2\sqrt{7}+4\approx 9.291502622
x=4-2\sqrt{7}\approx -1.291502622
Graph
Share
Copied to clipboard
-\frac{1}{2}x+1+\frac{1}{4}x^{2}=\frac{3}{2}x+4
Add \frac{1}{4}x^{2} to both sides.
-\frac{1}{2}x+1+\frac{1}{4}x^{2}-\frac{3}{2}x=4
Subtract \frac{3}{2}x from both sides.
-2x+1+\frac{1}{4}x^{2}=4
Combine -\frac{1}{2}x and -\frac{3}{2}x to get -2x.
-2x+1+\frac{1}{4}x^{2}-4=0
Subtract 4 from both sides.
-2x-3+\frac{1}{4}x^{2}=0
Subtract 4 from 1 to get -3.
\frac{1}{4}x^{2}-2x-3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times \frac{1}{4}\left(-3\right)}}{2\times \frac{1}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{4} for a, -2 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times \frac{1}{4}\left(-3\right)}}{2\times \frac{1}{4}}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4-\left(-3\right)}}{2\times \frac{1}{4}}
Multiply -4 times \frac{1}{4}.
x=\frac{-\left(-2\right)±\sqrt{4+3}}{2\times \frac{1}{4}}
Multiply -1 times -3.
x=\frac{-\left(-2\right)±\sqrt{7}}{2\times \frac{1}{4}}
Add 4 to 3.
x=\frac{2±\sqrt{7}}{2\times \frac{1}{4}}
The opposite of -2 is 2.
x=\frac{2±\sqrt{7}}{\frac{1}{2}}
Multiply 2 times \frac{1}{4}.
x=\frac{\sqrt{7}+2}{\frac{1}{2}}
Now solve the equation x=\frac{2±\sqrt{7}}{\frac{1}{2}} when ± is plus. Add 2 to \sqrt{7}.
x=2\sqrt{7}+4
Divide 2+\sqrt{7} by \frac{1}{2} by multiplying 2+\sqrt{7} by the reciprocal of \frac{1}{2}.
x=\frac{2-\sqrt{7}}{\frac{1}{2}}
Now solve the equation x=\frac{2±\sqrt{7}}{\frac{1}{2}} when ± is minus. Subtract \sqrt{7} from 2.
x=4-2\sqrt{7}
Divide 2-\sqrt{7} by \frac{1}{2} by multiplying 2-\sqrt{7} by the reciprocal of \frac{1}{2}.
x=2\sqrt{7}+4 x=4-2\sqrt{7}
The equation is now solved.
-\frac{1}{2}x+1+\frac{1}{4}x^{2}=\frac{3}{2}x+4
Add \frac{1}{4}x^{2} to both sides.
-\frac{1}{2}x+1+\frac{1}{4}x^{2}-\frac{3}{2}x=4
Subtract \frac{3}{2}x from both sides.
-2x+1+\frac{1}{4}x^{2}=4
Combine -\frac{1}{2}x and -\frac{3}{2}x to get -2x.
-2x+\frac{1}{4}x^{2}=4-1
Subtract 1 from both sides.
-2x+\frac{1}{4}x^{2}=3
Subtract 1 from 4 to get 3.
\frac{1}{4}x^{2}-2x=3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{1}{4}x^{2}-2x}{\frac{1}{4}}=\frac{3}{\frac{1}{4}}
Multiply both sides by 4.
x^{2}+\left(-\frac{2}{\frac{1}{4}}\right)x=\frac{3}{\frac{1}{4}}
Dividing by \frac{1}{4} undoes the multiplication by \frac{1}{4}.
x^{2}-8x=\frac{3}{\frac{1}{4}}
Divide -2 by \frac{1}{4} by multiplying -2 by the reciprocal of \frac{1}{4}.
x^{2}-8x=12
Divide 3 by \frac{1}{4} by multiplying 3 by the reciprocal of \frac{1}{4}.
x^{2}-8x+\left(-4\right)^{2}=12+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-8x+16=12+16
Square -4.
x^{2}-8x+16=28
Add 12 to 16.
\left(x-4\right)^{2}=28
Factor x^{2}-8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{28}
Take the square root of both sides of the equation.
x-4=2\sqrt{7} x-4=-2\sqrt{7}
Simplify.
x=2\sqrt{7}+4 x=4-2\sqrt{7}
Add 4 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}