Evaluate
\frac{3}{2}-2i=1.5-2i
Real Part
\frac{3}{2} = 1\frac{1}{2} = 1.5
Share
Copied to clipboard
-\frac{1}{2}\left(-i\right)\left(\sqrt{-9}-4\right)-3i^{2}
Calculate i to the power of 3 and get -i.
\frac{1}{2}i\left(\sqrt{-9}-4\right)-3i^{2}
Multiply -\frac{1}{2} and -i to get \frac{1}{2}i.
\frac{1}{2}i\left(3i-4\right)-3i^{2}
Calculate the square root of -9 and get 3i.
-\frac{3}{2}-2i-3i^{2}
Use the distributive property to multiply \frac{1}{2}i by 3i-4.
-\frac{3}{2}-2i-3\left(-1\right)
Calculate i to the power of 2 and get -1.
-\frac{3}{2}-2i-\left(-3\right)
Multiply 3 and -1 to get -3.
-\frac{3}{2}-2i+3
The opposite of -3 is 3.
\frac{3}{2}-2i
Add -\frac{3}{2}-2i and 3 to get \frac{3}{2}-2i.
Re(-\frac{1}{2}\left(-i\right)\left(\sqrt{-9}-4\right)-3i^{2})
Calculate i to the power of 3 and get -i.
Re(\frac{1}{2}i\left(\sqrt{-9}-4\right)-3i^{2})
Multiply -\frac{1}{2} and -i to get \frac{1}{2}i.
Re(\frac{1}{2}i\left(3i-4\right)-3i^{2})
Calculate the square root of -9 and get 3i.
Re(-\frac{3}{2}-2i-3i^{2})
Use the distributive property to multiply \frac{1}{2}i by 3i-4.
Re(-\frac{3}{2}-2i-3\left(-1\right))
Calculate i to the power of 2 and get -1.
Re(-\frac{3}{2}-2i-\left(-3\right))
Multiply 3 and -1 to get -3.
Re(-\frac{3}{2}-2i+3)
The opposite of -3 is 3.
Re(\frac{3}{2}-2i)
Add -\frac{3}{2}-2i and 3 to get \frac{3}{2}-2i.
\frac{3}{2}
The real part of \frac{3}{2}-2i is \frac{3}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}