Evaluate
\frac{3-3j}{2}
Factor
\frac{3\left(1-j\right)}{2}
Share
Copied to clipboard
-\frac{1}{2}-j+\frac{4}{2}-\frac{1}{2}j
Convert 2 to fraction \frac{4}{2}.
\frac{-1+4}{2}-j-\frac{1}{2}j
Since -\frac{1}{2} and \frac{4}{2} have the same denominator, add them by adding their numerators.
\frac{3}{2}-j-\frac{1}{2}j
Add -1 and 4 to get 3.
\frac{3}{2}-\frac{3}{2}j
Combine -j and -\frac{1}{2}j to get -\frac{3}{2}j.
\frac{3-3j}{2}
Factor out \frac{1}{2}.
-3j+3
Consider -1-2j+4-j. Multiply and combine like terms.
3\left(-j+1\right)
Consider -3j+3. Factor out 3.
\frac{3\left(-j+1\right)}{2}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}