Evaluate
-\frac{5}{4}=-1.25
Factor
-\frac{5}{4} = -1\frac{1}{4} = -1.25
Share
Copied to clipboard
-\frac{1}{2}-\left(2-\left(\frac{4}{12}-\frac{3}{12}\right)\right)-\left(\frac{1\times 3+1}{3}-\frac{2\times 2+1}{2}\right)
Least common multiple of 3 and 4 is 12. Convert \frac{1}{3} and \frac{1}{4} to fractions with denominator 12.
-\frac{1}{2}-\left(2-\frac{4-3}{12}\right)-\left(\frac{1\times 3+1}{3}-\frac{2\times 2+1}{2}\right)
Since \frac{4}{12} and \frac{3}{12} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{2}-\left(2-\frac{1}{12}\right)-\left(\frac{1\times 3+1}{3}-\frac{2\times 2+1}{2}\right)
Subtract 3 from 4 to get 1.
-\frac{1}{2}-\left(\frac{24}{12}-\frac{1}{12}\right)-\left(\frac{1\times 3+1}{3}-\frac{2\times 2+1}{2}\right)
Convert 2 to fraction \frac{24}{12}.
-\frac{1}{2}-\frac{24-1}{12}-\left(\frac{1\times 3+1}{3}-\frac{2\times 2+1}{2}\right)
Since \frac{24}{12} and \frac{1}{12} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{2}-\frac{23}{12}-\left(\frac{1\times 3+1}{3}-\frac{2\times 2+1}{2}\right)
Subtract 1 from 24 to get 23.
-\frac{6}{12}-\frac{23}{12}-\left(\frac{1\times 3+1}{3}-\frac{2\times 2+1}{2}\right)
Least common multiple of 2 and 12 is 12. Convert -\frac{1}{2} and \frac{23}{12} to fractions with denominator 12.
\frac{-6-23}{12}-\left(\frac{1\times 3+1}{3}-\frac{2\times 2+1}{2}\right)
Since -\frac{6}{12} and \frac{23}{12} have the same denominator, subtract them by subtracting their numerators.
-\frac{29}{12}-\left(\frac{1\times 3+1}{3}-\frac{2\times 2+1}{2}\right)
Subtract 23 from -6 to get -29.
-\frac{29}{12}-\left(\frac{3+1}{3}-\frac{2\times 2+1}{2}\right)
Multiply 1 and 3 to get 3.
-\frac{29}{12}-\left(\frac{4}{3}-\frac{2\times 2+1}{2}\right)
Add 3 and 1 to get 4.
-\frac{29}{12}-\left(\frac{4}{3}-\frac{4+1}{2}\right)
Multiply 2 and 2 to get 4.
-\frac{29}{12}-\left(\frac{4}{3}-\frac{5}{2}\right)
Add 4 and 1 to get 5.
-\frac{29}{12}-\left(\frac{8}{6}-\frac{15}{6}\right)
Least common multiple of 3 and 2 is 6. Convert \frac{4}{3} and \frac{5}{2} to fractions with denominator 6.
-\frac{29}{12}-\frac{8-15}{6}
Since \frac{8}{6} and \frac{15}{6} have the same denominator, subtract them by subtracting their numerators.
-\frac{29}{12}-\left(-\frac{7}{6}\right)
Subtract 15 from 8 to get -7.
-\frac{29}{12}+\frac{7}{6}
The opposite of -\frac{7}{6} is \frac{7}{6}.
-\frac{29}{12}+\frac{14}{12}
Least common multiple of 12 and 6 is 12. Convert -\frac{29}{12} and \frac{7}{6} to fractions with denominator 12.
\frac{-29+14}{12}
Since -\frac{29}{12} and \frac{14}{12} have the same denominator, add them by adding their numerators.
\frac{-15}{12}
Add -29 and 14 to get -15.
-\frac{5}{4}
Reduce the fraction \frac{-15}{12} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}