Solve for x
x=\sqrt{6}+2\approx 4.449489743
x=2-\sqrt{6}\approx -0.449489743
Graph
Share
Copied to clipboard
-\frac{1}{2}\left(x-2\right)^{2}+3-3=-3
Subtract 3 from both sides of the equation.
-\frac{1}{2}\left(x-2\right)^{2}=-3
Subtracting 3 from itself leaves 0.
\frac{-\frac{1}{2}\left(x-2\right)^{2}}{-\frac{1}{2}}=-\frac{3}{-\frac{1}{2}}
Multiply both sides by -2.
\left(x-2\right)^{2}=-\frac{3}{-\frac{1}{2}}
Dividing by -\frac{1}{2} undoes the multiplication by -\frac{1}{2}.
\left(x-2\right)^{2}=6
Divide -3 by -\frac{1}{2} by multiplying -3 by the reciprocal of -\frac{1}{2}.
x-2=\sqrt{6} x-2=-\sqrt{6}
Take the square root of both sides of the equation.
x-2-\left(-2\right)=\sqrt{6}-\left(-2\right) x-2-\left(-2\right)=-\sqrt{6}-\left(-2\right)
Add 2 to both sides of the equation.
x=\sqrt{6}-\left(-2\right) x=-\sqrt{6}-\left(-2\right)
Subtracting -2 from itself leaves 0.
x=\sqrt{6}+2
Subtract -2 from \sqrt{6}.
x=2-\sqrt{6}
Subtract -2 from -\sqrt{6}.
x=\sqrt{6}+2 x=2-\sqrt{6}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}