Solve for q
q = -\frac{17}{2} = -8\frac{1}{2} = -8.5
Share
Copied to clipboard
-2\left(q+4\right)=2\times 4+1
Multiply both sides of the equation by 4, the least common multiple of 2,4.
-2q-8=2\times 4+1
Use the distributive property to multiply -2 by q+4.
-2q-8=8+1
Multiply 2 and 4 to get 8.
-2q-8=9
Add 8 and 1 to get 9.
-2q=9+8
Add 8 to both sides.
-2q=17
Add 9 and 8 to get 17.
q=\frac{17}{-2}
Divide both sides by -2.
q=-\frac{17}{2}
Fraction \frac{17}{-2} can be rewritten as -\frac{17}{2} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}