Evaluate
\frac{300}{121}\approx 2.479338843
Factor
\frac{2 ^ {2} \cdot 3 \cdot 5 ^ {2}}{11 ^ {2}} = 2\frac{58}{121} = 2.479338842975207
Share
Copied to clipboard
-\frac{1}{2}\times \frac{841}{121}-\frac{3}{2}\left(-\frac{29}{11}\right)+2
Calculate -\frac{29}{11} to the power of 2 and get \frac{841}{121}.
\frac{-841}{2\times 121}-\frac{3}{2}\left(-\frac{29}{11}\right)+2
Multiply -\frac{1}{2} times \frac{841}{121} by multiplying numerator times numerator and denominator times denominator.
\frac{-841}{242}-\frac{3}{2}\left(-\frac{29}{11}\right)+2
Do the multiplications in the fraction \frac{-841}{2\times 121}.
-\frac{841}{242}-\frac{3}{2}\left(-\frac{29}{11}\right)+2
Fraction \frac{-841}{242} can be rewritten as -\frac{841}{242} by extracting the negative sign.
-\frac{841}{242}-\frac{3\left(-29\right)}{2\times 11}+2
Multiply \frac{3}{2} times -\frac{29}{11} by multiplying numerator times numerator and denominator times denominator.
-\frac{841}{242}-\frac{-87}{22}+2
Do the multiplications in the fraction \frac{3\left(-29\right)}{2\times 11}.
-\frac{841}{242}-\left(-\frac{87}{22}\right)+2
Fraction \frac{-87}{22} can be rewritten as -\frac{87}{22} by extracting the negative sign.
-\frac{841}{242}+\frac{87}{22}+2
The opposite of -\frac{87}{22} is \frac{87}{22}.
-\frac{841}{242}+\frac{957}{242}+2
Least common multiple of 242 and 22 is 242. Convert -\frac{841}{242} and \frac{87}{22} to fractions with denominator 242.
\frac{-841+957}{242}+2
Since -\frac{841}{242} and \frac{957}{242} have the same denominator, add them by adding their numerators.
\frac{116}{242}+2
Add -841 and 957 to get 116.
\frac{58}{121}+2
Reduce the fraction \frac{116}{242} to lowest terms by extracting and canceling out 2.
\frac{58}{121}+\frac{242}{121}
Convert 2 to fraction \frac{242}{121}.
\frac{58+242}{121}
Since \frac{58}{121} and \frac{242}{121} have the same denominator, add them by adding their numerators.
\frac{300}{121}
Add 58 and 242 to get 300.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}