Evaluate
1
Factor
1
Share
Copied to clipboard
-\frac{1}{2}\times \frac{\left(\sqrt{17}-1\right)^{2}}{2^{2}}-\frac{1}{2}\times \frac{\sqrt{17}-1}{2}+3
To raise \frac{\sqrt{17}-1}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{-\left(\sqrt{17}-1\right)^{2}}{2\times 2^{2}}-\frac{1}{2}\times \frac{\sqrt{17}-1}{2}+3
Multiply -\frac{1}{2} times \frac{\left(\sqrt{17}-1\right)^{2}}{2^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(\sqrt{17}-1\right)^{2}}{2\times 2^{2}}-\frac{\sqrt{17}-1}{2\times 2}+3
Multiply \frac{1}{2} times \frac{\sqrt{17}-1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(\sqrt{17}-1\right)^{2}}{2\times 2^{2}}-\frac{\sqrt{17}-1}{4}+3
Multiply 2 and 2 to get 4.
\frac{-\left(\sqrt{17}-1\right)^{2}}{8}-\frac{2\left(\sqrt{17}-1\right)}{8}+3
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\times 2^{2} and 4 is 8. Multiply \frac{\sqrt{17}-1}{4} times \frac{2}{2}.
\frac{-\left(\sqrt{17}-1\right)^{2}-2\left(\sqrt{17}-1\right)}{8}+3
Since \frac{-\left(\sqrt{17}-1\right)^{2}}{8} and \frac{2\left(\sqrt{17}-1\right)}{8} have the same denominator, subtract them by subtracting their numerators.
\frac{-\left(\sqrt{17}-1\right)^{2}-2\left(\sqrt{17}-1\right)}{8}+\frac{3\times 8}{8}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{8}{8}.
\frac{-\left(\sqrt{17}-1\right)^{2}-2\left(\sqrt{17}-1\right)+3\times 8}{8}
Since \frac{-\left(\sqrt{17}-1\right)^{2}-2\left(\sqrt{17}-1\right)}{8} and \frac{3\times 8}{8} have the same denominator, add them by adding their numerators.
\frac{-\left(\left(\sqrt{17}\right)^{2}-2\sqrt{17}+1\right)-2\left(\sqrt{17}-1\right)}{8}+3
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{17}-1\right)^{2}.
\frac{-\left(17-2\sqrt{17}+1\right)-2\left(\sqrt{17}-1\right)}{8}+3
The square of \sqrt{17} is 17.
\frac{-\left(18-2\sqrt{17}\right)-2\left(\sqrt{17}-1\right)}{8}+3
Add 17 and 1 to get 18.
\frac{-\left(18-2\sqrt{17}\right)-2\left(\sqrt{17}-1\right)}{8}+\frac{3\times 8}{8}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{8}{8}.
\frac{-\left(18-2\sqrt{17}\right)-2\left(\sqrt{17}-1\right)+3\times 8}{8}
Since \frac{-\left(18-2\sqrt{17}\right)-2\left(\sqrt{17}-1\right)}{8} and \frac{3\times 8}{8} have the same denominator, add them by adding their numerators.
\frac{-18+2\sqrt{17}-2\sqrt{17}+2+24}{8}
Do the multiplications in -\left(18-2\sqrt{17}\right)-2\left(\sqrt{17}-1\right)+3\times 8.
\frac{8}{8}
Do the calculations in -18+2\sqrt{17}-2\sqrt{17}+2+24.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}