Solve for x
x\leq \frac{13}{6}
Graph
Share
Copied to clipboard
-5\leq 8-2\times 3x
Multiply both sides of the equation by 10, the least common multiple of 2,5. Since 10 is positive, the inequality direction remains the same.
-5\leq 8-6x
Multiply -2 and 3 to get -6.
8-6x\geq -5
Swap sides so that all variable terms are on the left hand side. This changes the sign direction.
-6x\geq -5-8
Subtract 8 from both sides.
-6x\geq -13
Subtract 8 from -5 to get -13.
x\leq \frac{-13}{-6}
Divide both sides by -6. Since -6 is negative, the inequality direction is changed.
x\leq \frac{13}{6}
Fraction \frac{-13}{-6} can be simplified to \frac{13}{6} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}