Evaluate
-3x
Expand
-3x
Graph
Share
Copied to clipboard
-\frac{1}{2}\times 8x-\frac{1}{2}\left(-12\right)-\left(6-x\right)
Use the distributive property to multiply -\frac{1}{2} by 8x-12.
\frac{-8}{2}x-\frac{1}{2}\left(-12\right)-\left(6-x\right)
Express -\frac{1}{2}\times 8 as a single fraction.
-4x-\frac{1}{2}\left(-12\right)-\left(6-x\right)
Divide -8 by 2 to get -4.
-4x+\frac{-\left(-12\right)}{2}-\left(6-x\right)
Express -\frac{1}{2}\left(-12\right) as a single fraction.
-4x+\frac{12}{2}-\left(6-x\right)
Multiply -1 and -12 to get 12.
-4x+6-\left(6-x\right)
Divide 12 by 2 to get 6.
-4x+6-6-\left(-x\right)
To find the opposite of 6-x, find the opposite of each term.
-4x+6-6+x
The opposite of -x is x.
-4x+x
Subtract 6 from 6 to get 0.
-3x
Combine -4x and x to get -3x.
-\frac{1}{2}\times 8x-\frac{1}{2}\left(-12\right)-\left(6-x\right)
Use the distributive property to multiply -\frac{1}{2} by 8x-12.
\frac{-8}{2}x-\frac{1}{2}\left(-12\right)-\left(6-x\right)
Express -\frac{1}{2}\times 8 as a single fraction.
-4x-\frac{1}{2}\left(-12\right)-\left(6-x\right)
Divide -8 by 2 to get -4.
-4x+\frac{-\left(-12\right)}{2}-\left(6-x\right)
Express -\frac{1}{2}\left(-12\right) as a single fraction.
-4x+\frac{12}{2}-\left(6-x\right)
Multiply -1 and -12 to get 12.
-4x+6-\left(6-x\right)
Divide 12 by 2 to get 6.
-4x+6-6-\left(-x\right)
To find the opposite of 6-x, find the opposite of each term.
-4x+6-6+x
The opposite of -x is x.
-4x+x
Subtract 6 from 6 to get 0.
-3x
Combine -4x and x to get -3x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}