Solve for x_f
x_{f}=-0.04i
x_{f}=0.04i
Share
Copied to clipboard
-\frac{1}{2}\times \frac{8000}{2}\left(0.02^{2}-x_{f}^{2}\right)+4=0
Expand \frac{80}{0.02} by multiplying both numerator and the denominator by 100.
-\frac{1}{2}\times 4000\left(0.02^{2}-x_{f}^{2}\right)+4=0
Divide 8000 by 2 to get 4000.
-2000\left(0.02^{2}-x_{f}^{2}\right)+4=0
Multiply -\frac{1}{2} and 4000 to get -2000.
-2000\left(0.0004-x_{f}^{2}\right)+4=0
Calculate 0.02 to the power of 2 and get 0.0004.
-0.8+2000x_{f}^{2}+4=0
Use the distributive property to multiply -2000 by 0.0004-x_{f}^{2}.
3.2+2000x_{f}^{2}=0
Add -0.8 and 4 to get 3.2.
2000x_{f}^{2}=-3.2
Subtract 3.2 from both sides. Anything subtracted from zero gives its negation.
x_{f}^{2}=\frac{-3.2}{2000}
Divide both sides by 2000.
x_{f}^{2}=\frac{-32}{20000}
Expand \frac{-3.2}{2000} by multiplying both numerator and the denominator by 10.
x_{f}^{2}=-\frac{1}{625}
Reduce the fraction \frac{-32}{20000} to lowest terms by extracting and canceling out 32.
x_{f}=\frac{1}{25}i x_{f}=-\frac{1}{25}i
The equation is now solved.
-\frac{1}{2}\times \frac{8000}{2}\left(0.02^{2}-x_{f}^{2}\right)+4=0
Expand \frac{80}{0.02} by multiplying both numerator and the denominator by 100.
-\frac{1}{2}\times 4000\left(0.02^{2}-x_{f}^{2}\right)+4=0
Divide 8000 by 2 to get 4000.
-2000\left(0.02^{2}-x_{f}^{2}\right)+4=0
Multiply -\frac{1}{2} and 4000 to get -2000.
-2000\left(0.0004-x_{f}^{2}\right)+4=0
Calculate 0.02 to the power of 2 and get 0.0004.
-0.8+2000x_{f}^{2}+4=0
Use the distributive property to multiply -2000 by 0.0004-x_{f}^{2}.
3.2+2000x_{f}^{2}=0
Add -0.8 and 4 to get 3.2.
2000x_{f}^{2}+3.2=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x_{f}=\frac{0±\sqrt{0^{2}-4\times 2000\times 3.2}}{2\times 2000}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2000 for a, 0 for b, and 3.2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x_{f}=\frac{0±\sqrt{-4\times 2000\times 3.2}}{2\times 2000}
Square 0.
x_{f}=\frac{0±\sqrt{-8000\times 3.2}}{2\times 2000}
Multiply -4 times 2000.
x_{f}=\frac{0±\sqrt{-25600}}{2\times 2000}
Multiply -8000 times 3.2.
x_{f}=\frac{0±160i}{2\times 2000}
Take the square root of -25600.
x_{f}=\frac{0±160i}{4000}
Multiply 2 times 2000.
x_{f}=\frac{1}{25}i
Now solve the equation x_{f}=\frac{0±160i}{4000} when ± is plus.
x_{f}=-\frac{1}{25}i
Now solve the equation x_{f}=\frac{0±160i}{4000} when ± is minus.
x_{f}=\frac{1}{25}i x_{f}=-\frac{1}{25}i
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}