Solve for m
m=-1.2
Share
Copied to clipboard
-3=-2\left(0.3-m\right)
Multiply both sides of the equation by 6, the least common multiple of 2,3.
-3=-0.6+2m
Use the distributive property to multiply -2 by 0.3-m.
-0.6+2m=-3
Swap sides so that all variable terms are on the left hand side.
2m=-3+0.6
Add 0.6 to both sides.
2m=-2.4
Add -3 and 0.6 to get -2.4.
m=\frac{-2.4}{2}
Divide both sides by 2.
m=\frac{-24}{20}
Expand \frac{-2.4}{2} by multiplying both numerator and the denominator by 10.
m=-\frac{6}{5}
Reduce the fraction \frac{-24}{20} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}