Evaluate
-\frac{1}{7}\approx -0.142857143
Factor
-\frac{1}{7} = -0.14285714285714285
Share
Copied to clipboard
-\frac{1}{2}+\frac{3}{7}-\left(\frac{1}{4}-\frac{10}{4}\right)-\left(\frac{5}{2}-\frac{5}{4}\times \frac{1}{7}\right)
Least common multiple of 4 and 2 is 4. Convert \frac{1}{4} and \frac{5}{2} to fractions with denominator 4.
-\frac{1}{2}+\frac{3}{7}-\frac{1-10}{4}-\left(\frac{5}{2}-\frac{5}{4}\times \frac{1}{7}\right)
Since \frac{1}{4} and \frac{10}{4} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{2}+\frac{3}{7}-\left(-\frac{9}{4}\right)-\left(\frac{5}{2}-\frac{5}{4}\times \frac{1}{7}\right)
Subtract 10 from 1 to get -9.
-\frac{1}{2}+\frac{3}{7}+\frac{9}{4}-\left(\frac{5}{2}-\frac{5}{4}\times \frac{1}{7}\right)
The opposite of -\frac{9}{4} is \frac{9}{4}.
-\frac{1}{2}+\frac{12}{28}+\frac{63}{28}-\left(\frac{5}{2}-\frac{5}{4}\times \frac{1}{7}\right)
Least common multiple of 7 and 4 is 28. Convert \frac{3}{7} and \frac{9}{4} to fractions with denominator 28.
-\frac{1}{2}+\frac{12+63}{28}-\left(\frac{5}{2}-\frac{5}{4}\times \frac{1}{7}\right)
Since \frac{12}{28} and \frac{63}{28} have the same denominator, add them by adding their numerators.
-\frac{1}{2}+\frac{75}{28}-\left(\frac{5}{2}-\frac{5}{4}\times \frac{1}{7}\right)
Add 12 and 63 to get 75.
-\frac{1}{2}+\frac{75}{28}-\left(\frac{5}{2}-\frac{5\times 1}{4\times 7}\right)
Multiply \frac{5}{4} times \frac{1}{7} by multiplying numerator times numerator and denominator times denominator.
-\frac{1}{2}+\frac{75}{28}-\left(\frac{5}{2}-\frac{5}{28}\right)
Do the multiplications in the fraction \frac{5\times 1}{4\times 7}.
-\frac{1}{2}+\frac{75}{28}-\left(\frac{70}{28}-\frac{5}{28}\right)
Least common multiple of 2 and 28 is 28. Convert \frac{5}{2} and \frac{5}{28} to fractions with denominator 28.
-\frac{1}{2}+\frac{75}{28}-\frac{70-5}{28}
Since \frac{70}{28} and \frac{5}{28} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{2}+\frac{75}{28}-\frac{65}{28}
Subtract 5 from 70 to get 65.
-\frac{1}{2}+\frac{75-65}{28}
Since \frac{75}{28} and \frac{65}{28} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{2}+\frac{10}{28}
Subtract 65 from 75 to get 10.
-\frac{1}{2}+\frac{5}{14}
Reduce the fraction \frac{10}{28} to lowest terms by extracting and canceling out 2.
-\frac{7}{14}+\frac{5}{14}
Least common multiple of 2 and 14 is 14. Convert -\frac{1}{2} and \frac{5}{14} to fractions with denominator 14.
\frac{-7+5}{14}
Since -\frac{7}{14} and \frac{5}{14} have the same denominator, add them by adding their numerators.
\frac{-2}{14}
Add -7 and 5 to get -2.
-\frac{1}{7}
Reduce the fraction \frac{-2}{14} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}