Solve for x
x=2\sqrt{30}+10\approx 20.95445115
x=10-2\sqrt{30}\approx -0.95445115
Graph
Share
Copied to clipboard
-\frac{1}{12}x^{2}+\frac{5}{3}x+\frac{5}{3}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{5}{3}±\sqrt{\left(\frac{5}{3}\right)^{2}-4\left(-\frac{1}{12}\right)\times \frac{5}{3}}}{2\left(-\frac{1}{12}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{12} for a, \frac{5}{3} for b, and \frac{5}{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{5}{3}±\sqrt{\frac{25}{9}-4\left(-\frac{1}{12}\right)\times \frac{5}{3}}}{2\left(-\frac{1}{12}\right)}
Square \frac{5}{3} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{5}{3}±\sqrt{\frac{25}{9}+\frac{1}{3}\times \frac{5}{3}}}{2\left(-\frac{1}{12}\right)}
Multiply -4 times -\frac{1}{12}.
x=\frac{-\frac{5}{3}±\sqrt{\frac{25+5}{9}}}{2\left(-\frac{1}{12}\right)}
Multiply \frac{1}{3} times \frac{5}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{5}{3}±\sqrt{\frac{10}{3}}}{2\left(-\frac{1}{12}\right)}
Add \frac{25}{9} to \frac{5}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{5}{3}±\frac{\sqrt{30}}{3}}{2\left(-\frac{1}{12}\right)}
Take the square root of \frac{10}{3}.
x=\frac{-\frac{5}{3}±\frac{\sqrt{30}}{3}}{-\frac{1}{6}}
Multiply 2 times -\frac{1}{12}.
x=\frac{\sqrt{30}-5}{-\frac{1}{6}\times 3}
Now solve the equation x=\frac{-\frac{5}{3}±\frac{\sqrt{30}}{3}}{-\frac{1}{6}} when ± is plus. Add -\frac{5}{3} to \frac{\sqrt{30}}{3}.
x=10-2\sqrt{30}
Divide \frac{-5+\sqrt{30}}{3} by -\frac{1}{6} by multiplying \frac{-5+\sqrt{30}}{3} by the reciprocal of -\frac{1}{6}.
x=\frac{-\sqrt{30}-5}{-\frac{1}{6}\times 3}
Now solve the equation x=\frac{-\frac{5}{3}±\frac{\sqrt{30}}{3}}{-\frac{1}{6}} when ± is minus. Subtract \frac{\sqrt{30}}{3} from -\frac{5}{3}.
x=2\sqrt{30}+10
Divide \frac{-5-\sqrt{30}}{3} by -\frac{1}{6} by multiplying \frac{-5-\sqrt{30}}{3} by the reciprocal of -\frac{1}{6}.
x=10-2\sqrt{30} x=2\sqrt{30}+10
The equation is now solved.
-\frac{1}{12}x^{2}+\frac{5}{3}x+\frac{5}{3}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-\frac{1}{12}x^{2}+\frac{5}{3}x+\frac{5}{3}-\frac{5}{3}=-\frac{5}{3}
Subtract \frac{5}{3} from both sides of the equation.
-\frac{1}{12}x^{2}+\frac{5}{3}x=-\frac{5}{3}
Subtracting \frac{5}{3} from itself leaves 0.
\frac{-\frac{1}{12}x^{2}+\frac{5}{3}x}{-\frac{1}{12}}=-\frac{\frac{5}{3}}{-\frac{1}{12}}
Multiply both sides by -12.
x^{2}+\frac{\frac{5}{3}}{-\frac{1}{12}}x=-\frac{\frac{5}{3}}{-\frac{1}{12}}
Dividing by -\frac{1}{12} undoes the multiplication by -\frac{1}{12}.
x^{2}-20x=-\frac{\frac{5}{3}}{-\frac{1}{12}}
Divide \frac{5}{3} by -\frac{1}{12} by multiplying \frac{5}{3} by the reciprocal of -\frac{1}{12}.
x^{2}-20x=20
Divide -\frac{5}{3} by -\frac{1}{12} by multiplying -\frac{5}{3} by the reciprocal of -\frac{1}{12}.
x^{2}-20x+\left(-10\right)^{2}=20+\left(-10\right)^{2}
Divide -20, the coefficient of the x term, by 2 to get -10. Then add the square of -10 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-20x+100=20+100
Square -10.
x^{2}-20x+100=120
Add 20 to 100.
\left(x-10\right)^{2}=120
Factor x^{2}-20x+100. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-10\right)^{2}}=\sqrt{120}
Take the square root of both sides of the equation.
x-10=2\sqrt{30} x-10=-2\sqrt{30}
Simplify.
x=2\sqrt{30}+10 x=10-2\sqrt{30}
Add 10 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}