Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(-\frac{1}{1+12y}\right)\times \frac{\left(1+3y\right)\times 62}{10}
Add 1 and 61 to get 62.
\left(-\frac{1}{1+12y}\right)\left(1+3y\right)\times \frac{31}{5}
Divide \left(1+3y\right)\times 62 by 10 to get \left(1+3y\right)\times \frac{31}{5}.
\left(-\frac{1}{1+12y}\right)\left(\frac{31}{5}+3y\times \frac{31}{5}\right)
Use the distributive property to multiply 1+3y by \frac{31}{5}.
\left(-\frac{1}{1+12y}\right)\left(\frac{31}{5}+\frac{3\times 31}{5}y\right)
Express 3\times \frac{31}{5} as a single fraction.
\left(-\frac{1}{1+12y}\right)\left(\frac{31}{5}+\frac{93}{5}y\right)
Multiply 3 and 31 to get 93.
\left(-\frac{1}{1+12y}\right)\times \frac{31}{5}+\left(-\frac{1}{1+12y}\right)\times \frac{93}{5}y
Use the distributive property to multiply -\frac{1}{1+12y} by \frac{31}{5}+\frac{93}{5}y.
\frac{-31}{\left(1+12y\right)\times 5}+\left(-\frac{1}{1+12y}\right)\times \frac{93}{5}y
Multiply -\frac{1}{1+12y} times \frac{31}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{-31}{\left(1+12y\right)\times 5}+\frac{-93}{\left(1+12y\right)\times 5}y
Multiply -\frac{1}{1+12y} times \frac{93}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{-31}{\left(1+12y\right)\times 5}+\frac{-93y}{\left(1+12y\right)\times 5}
Express \frac{-93}{\left(1+12y\right)\times 5}y as a single fraction.
\frac{-31-93y}{\left(1+12y\right)\times 5}
Since \frac{-31}{\left(1+12y\right)\times 5} and \frac{-93y}{\left(1+12y\right)\times 5} have the same denominator, add them by adding their numerators.
\frac{-31-93y}{60y+5}
Expand \left(1+12y\right)\times 5.
\left(-\frac{1}{1+12y}\right)\times \frac{\left(1+3y\right)\times 62}{10}
Add 1 and 61 to get 62.
\left(-\frac{1}{1+12y}\right)\left(1+3y\right)\times \frac{31}{5}
Divide \left(1+3y\right)\times 62 by 10 to get \left(1+3y\right)\times \frac{31}{5}.
\left(-\frac{1}{1+12y}\right)\left(\frac{31}{5}+3y\times \frac{31}{5}\right)
Use the distributive property to multiply 1+3y by \frac{31}{5}.
\left(-\frac{1}{1+12y}\right)\left(\frac{31}{5}+\frac{3\times 31}{5}y\right)
Express 3\times \frac{31}{5} as a single fraction.
\left(-\frac{1}{1+12y}\right)\left(\frac{31}{5}+\frac{93}{5}y\right)
Multiply 3 and 31 to get 93.
\left(-\frac{1}{1+12y}\right)\times \frac{31}{5}+\left(-\frac{1}{1+12y}\right)\times \frac{93}{5}y
Use the distributive property to multiply -\frac{1}{1+12y} by \frac{31}{5}+\frac{93}{5}y.
\frac{-31}{\left(1+12y\right)\times 5}+\left(-\frac{1}{1+12y}\right)\times \frac{93}{5}y
Multiply -\frac{1}{1+12y} times \frac{31}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{-31}{\left(1+12y\right)\times 5}+\frac{-93}{\left(1+12y\right)\times 5}y
Multiply -\frac{1}{1+12y} times \frac{93}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{-31}{\left(1+12y\right)\times 5}+\frac{-93y}{\left(1+12y\right)\times 5}
Express \frac{-93}{\left(1+12y\right)\times 5}y as a single fraction.
\frac{-31-93y}{\left(1+12y\right)\times 5}
Since \frac{-31}{\left(1+12y\right)\times 5} and \frac{-93y}{\left(1+12y\right)\times 5} have the same denominator, add them by adding their numerators.
\frac{-31-93y}{60y+5}
Expand \left(1+12y\right)\times 5.