Evaluate
-\frac{31\left(3y+1\right)}{5\left(12y+1\right)}
Expand
-\frac{31\left(3y+1\right)}{5\left(12y+1\right)}
Graph
Share
Copied to clipboard
\left(-\frac{1}{1+12y}\right)\times \frac{\left(1+3y\right)\times 62}{10}
Add 1 and 61 to get 62.
\left(-\frac{1}{1+12y}\right)\left(1+3y\right)\times \frac{31}{5}
Divide \left(1+3y\right)\times 62 by 10 to get \left(1+3y\right)\times \frac{31}{5}.
\left(-\frac{1}{1+12y}\right)\left(\frac{31}{5}+3y\times \frac{31}{5}\right)
Use the distributive property to multiply 1+3y by \frac{31}{5}.
\left(-\frac{1}{1+12y}\right)\left(\frac{31}{5}+\frac{3\times 31}{5}y\right)
Express 3\times \frac{31}{5} as a single fraction.
\left(-\frac{1}{1+12y}\right)\left(\frac{31}{5}+\frac{93}{5}y\right)
Multiply 3 and 31 to get 93.
\left(-\frac{1}{1+12y}\right)\times \frac{31}{5}+\left(-\frac{1}{1+12y}\right)\times \frac{93}{5}y
Use the distributive property to multiply -\frac{1}{1+12y} by \frac{31}{5}+\frac{93}{5}y.
\frac{-31}{\left(1+12y\right)\times 5}+\left(-\frac{1}{1+12y}\right)\times \frac{93}{5}y
Multiply -\frac{1}{1+12y} times \frac{31}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{-31}{\left(1+12y\right)\times 5}+\frac{-93}{\left(1+12y\right)\times 5}y
Multiply -\frac{1}{1+12y} times \frac{93}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{-31}{\left(1+12y\right)\times 5}+\frac{-93y}{\left(1+12y\right)\times 5}
Express \frac{-93}{\left(1+12y\right)\times 5}y as a single fraction.
\frac{-31-93y}{\left(1+12y\right)\times 5}
Since \frac{-31}{\left(1+12y\right)\times 5} and \frac{-93y}{\left(1+12y\right)\times 5} have the same denominator, add them by adding their numerators.
\frac{-31-93y}{60y+5}
Expand \left(1+12y\right)\times 5.
\left(-\frac{1}{1+12y}\right)\times \frac{\left(1+3y\right)\times 62}{10}
Add 1 and 61 to get 62.
\left(-\frac{1}{1+12y}\right)\left(1+3y\right)\times \frac{31}{5}
Divide \left(1+3y\right)\times 62 by 10 to get \left(1+3y\right)\times \frac{31}{5}.
\left(-\frac{1}{1+12y}\right)\left(\frac{31}{5}+3y\times \frac{31}{5}\right)
Use the distributive property to multiply 1+3y by \frac{31}{5}.
\left(-\frac{1}{1+12y}\right)\left(\frac{31}{5}+\frac{3\times 31}{5}y\right)
Express 3\times \frac{31}{5} as a single fraction.
\left(-\frac{1}{1+12y}\right)\left(\frac{31}{5}+\frac{93}{5}y\right)
Multiply 3 and 31 to get 93.
\left(-\frac{1}{1+12y}\right)\times \frac{31}{5}+\left(-\frac{1}{1+12y}\right)\times \frac{93}{5}y
Use the distributive property to multiply -\frac{1}{1+12y} by \frac{31}{5}+\frac{93}{5}y.
\frac{-31}{\left(1+12y\right)\times 5}+\left(-\frac{1}{1+12y}\right)\times \frac{93}{5}y
Multiply -\frac{1}{1+12y} times \frac{31}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{-31}{\left(1+12y\right)\times 5}+\frac{-93}{\left(1+12y\right)\times 5}y
Multiply -\frac{1}{1+12y} times \frac{93}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{-31}{\left(1+12y\right)\times 5}+\frac{-93y}{\left(1+12y\right)\times 5}
Express \frac{-93}{\left(1+12y\right)\times 5}y as a single fraction.
\frac{-31-93y}{\left(1+12y\right)\times 5}
Since \frac{-31}{\left(1+12y\right)\times 5} and \frac{-93y}{\left(1+12y\right)\times 5} have the same denominator, add them by adding their numerators.
\frac{-31-93y}{60y+5}
Expand \left(1+12y\right)\times 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}