Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(-\frac{1}{1+\frac{y^{2}}{x^{2}}}\right)\times \frac{y}{x^{2}}
To raise \frac{y}{x} to a power, raise both numerator and denominator to the power and then divide.
\left(-\frac{1}{\frac{x^{2}}{x^{2}}+\frac{y^{2}}{x^{2}}}\right)\times \frac{y}{x^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x^{2}}{x^{2}}.
\left(-\frac{1}{\frac{x^{2}+y^{2}}{x^{2}}}\right)\times \frac{y}{x^{2}}
Since \frac{x^{2}}{x^{2}} and \frac{y^{2}}{x^{2}} have the same denominator, add them by adding their numerators.
\left(-\frac{x^{2}}{x^{2}+y^{2}}\right)\times \frac{y}{x^{2}}
Divide 1 by \frac{x^{2}+y^{2}}{x^{2}} by multiplying 1 by the reciprocal of \frac{x^{2}+y^{2}}{x^{2}}.
\frac{-x^{2}y}{\left(x^{2}+y^{2}\right)x^{2}}
Multiply -\frac{x^{2}}{x^{2}+y^{2}} times \frac{y}{x^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{-y}{x^{2}+y^{2}}
Cancel out x^{2} in both numerator and denominator.
\left(-\frac{1}{1+\frac{y^{2}}{x^{2}}}\right)\times \frac{y}{x^{2}}
To raise \frac{y}{x} to a power, raise both numerator and denominator to the power and then divide.
\left(-\frac{1}{\frac{x^{2}}{x^{2}}+\frac{y^{2}}{x^{2}}}\right)\times \frac{y}{x^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x^{2}}{x^{2}}.
\left(-\frac{1}{\frac{x^{2}+y^{2}}{x^{2}}}\right)\times \frac{y}{x^{2}}
Since \frac{x^{2}}{x^{2}} and \frac{y^{2}}{x^{2}} have the same denominator, add them by adding their numerators.
\left(-\frac{x^{2}}{x^{2}+y^{2}}\right)\times \frac{y}{x^{2}}
Divide 1 by \frac{x^{2}+y^{2}}{x^{2}} by multiplying 1 by the reciprocal of \frac{x^{2}+y^{2}}{x^{2}}.
\frac{-x^{2}y}{\left(x^{2}+y^{2}\right)x^{2}}
Multiply -\frac{x^{2}}{x^{2}+y^{2}} times \frac{y}{x^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{-y}{x^{2}+y^{2}}
Cancel out x^{2} in both numerator and denominator.