Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(-\frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\right)x+2=\sqrt{3}x
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\left(-\frac{\sqrt{3}}{3}\right)x+2=\sqrt{3}x
The square of \sqrt{3} is 3.
\frac{-\sqrt{3}x}{3}+2=\sqrt{3}x
Express \left(-\frac{\sqrt{3}}{3}\right)x as a single fraction.
\frac{-\sqrt{3}x}{3}+2-\sqrt{3}x=0
Subtract \sqrt{3}x from both sides.
3\left(\frac{-\sqrt{3}x}{3}+2\right)-3\sqrt{3}x=0
Multiply both sides of the equation by 3.
9\left(\frac{-\sqrt{3}x}{3}+2\right)-3\times 3\sqrt{3}x=0
Multiply both sides of the equation by 3.
9\times \frac{-\sqrt{3}x}{3}+18-3\times 3\sqrt{3}x=0
Use the distributive property to multiply 9 by \frac{-\sqrt{3}x}{3}+2.
3\left(-1\right)\sqrt{3}x+18-3\times 3\sqrt{3}x=0
Cancel out 3, the greatest common factor in 9 and 3.
-3\sqrt{3}x+18-3\times 3\sqrt{3}x=0
Multiply 3 and -1 to get -3.
-3\sqrt{3}x+18-9\sqrt{3}x=0
Multiply -3 and 3 to get -9.
-12\sqrt{3}x+18=0
Combine -3\sqrt{3}x and -9\sqrt{3}x to get -12\sqrt{3}x.
-12\sqrt{3}x=-18
Subtract 18 from both sides. Anything subtracted from zero gives its negation.
\left(-12\sqrt{3}\right)x=-18
The equation is in standard form.
\frac{\left(-12\sqrt{3}\right)x}{-12\sqrt{3}}=-\frac{18}{-12\sqrt{3}}
Divide both sides by -12\sqrt{3}.
x=-\frac{18}{-12\sqrt{3}}
Dividing by -12\sqrt{3} undoes the multiplication by -12\sqrt{3}.
x=\frac{\sqrt{3}}{2}
Divide -18 by -12\sqrt{3}.