Evaluate
-\frac{\sqrt{3}}{39}-\frac{3}{13}\approx -0.27518079
Factor
\frac{-\sqrt{3} - 9}{39} = -0.2751807899376635
Share
Copied to clipboard
\left(-\frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\right)\times \frac{1}{13}-\frac{3}{13}
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\left(-\frac{\sqrt{3}}{3}\right)\times \frac{1}{13}-\frac{3}{13}
The square of \sqrt{3} is 3.
\frac{-\sqrt{3}}{3\times 13}-\frac{3}{13}
Multiply -\frac{\sqrt{3}}{3} times \frac{1}{13} by multiplying numerator times numerator and denominator times denominator.
\frac{-\sqrt{3}}{3\times 13}-\frac{3\times 3}{3\times 13}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\times 13 and 13 is 3\times 13. Multiply \frac{3}{13} times \frac{3}{3}.
\frac{-\sqrt{3}-3\times 3}{3\times 13}
Since \frac{-\sqrt{3}}{3\times 13} and \frac{3\times 3}{3\times 13} have the same denominator, subtract them by subtracting their numerators.
\frac{-\sqrt{3}-9}{3\times 13}
Do the multiplications in -\sqrt{3}-3\times 3.
\frac{-\sqrt{3}-9}{39}
Expand 3\times 13.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}