Evaluate
-c^{2}-1
Differentiate w.r.t. c
-2c
Quiz
Algebra
5 problems similar to:
- \frac { 1 ^ { 3 } } { c ^ { - 2 } } - 2 \frac { 1 ^ { 2 } } { 2 }
Share
Copied to clipboard
-\frac{1}{c^{-2}}-2\times \frac{1^{2}}{2}
Calculate 1 to the power of 3 and get 1.
-\frac{1}{c^{-2}}-2\times \frac{1}{2}
Calculate 1 to the power of 2 and get 1.
-\frac{1}{c^{-2}}-1
Multiply 2 and \frac{1}{2} to get 1.
-\frac{1}{c^{-2}}-\frac{c^{-2}}{c^{-2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{c^{-2}}{c^{-2}}.
\frac{-1-c^{-2}}{c^{-2}}
Since -\frac{1}{c^{-2}} and \frac{c^{-2}}{c^{-2}} have the same denominator, subtract them by subtracting their numerators.
\frac{-c^{-2}\left(c^{2}+1\right)}{c^{-2}}
Factor the expressions that are not already factored in \frac{-1-c^{-2}}{c^{-2}}.
-\left(c^{2}+1\right)
Cancel out c^{-2} in both numerator and denominator.
-c^{2}-1
Expand the expression.
\frac{\mathrm{d}}{\mathrm{d}c}(-\frac{1}{c^{-2}}-2\times \frac{1^{2}}{2})
Calculate 1 to the power of 3 and get 1.
\frac{\mathrm{d}}{\mathrm{d}c}(-\frac{1}{c^{-2}}-2\times \frac{1}{2})
Calculate 1 to the power of 2 and get 1.
\frac{\mathrm{d}}{\mathrm{d}c}(-\frac{1}{c^{-2}}-1)
Multiply 2 and \frac{1}{2} to get 1.
\frac{\mathrm{d}}{\mathrm{d}c}(-\frac{1}{c^{-2}}-\frac{c^{-2}}{c^{-2}})
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{c^{-2}}{c^{-2}}.
\frac{\mathrm{d}}{\mathrm{d}c}(\frac{-1-c^{-2}}{c^{-2}})
Since -\frac{1}{c^{-2}} and \frac{c^{-2}}{c^{-2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\mathrm{d}}{\mathrm{d}c}(\frac{-c^{-2}\left(c^{2}+1\right)}{c^{-2}})
Factor the expressions that are not already factored in \frac{-1-c^{-2}}{c^{-2}}.
\frac{\mathrm{d}}{\mathrm{d}c}(-\left(c^{2}+1\right))
Cancel out c^{-2} in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}c}(-c^{2}-1)
Expand the expression.
2\left(-1\right)c^{2-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
-2c^{2-1}
Multiply 2 times -1.
-2c^{1}
Subtract 1 from 2.
-2c
For any term t, t^{1}=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}