Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

-\frac{\left(1+\sqrt{3}\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}
Rationalize the denominator of \frac{1+\sqrt{3}}{\sqrt{3}-1} by multiplying numerator and denominator by \sqrt{3}+1.
-\frac{\left(1+\sqrt{3}\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}
Consider \left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
-\frac{\left(1+\sqrt{3}\right)\left(\sqrt{3}+1\right)}{3-1}
Square \sqrt{3}. Square 1.
-\frac{\left(1+\sqrt{3}\right)\left(\sqrt{3}+1\right)}{2}
Subtract 1 from 3 to get 2.
-\frac{\left(1+\sqrt{3}\right)^{2}}{2}
Multiply 1+\sqrt{3} and \sqrt{3}+1 to get \left(1+\sqrt{3}\right)^{2}.
-\frac{1+2\sqrt{3}+\left(\sqrt{3}\right)^{2}}{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\sqrt{3}\right)^{2}.
-\frac{1+2\sqrt{3}+3}{2}
The square of \sqrt{3} is 3.
-\frac{4+2\sqrt{3}}{2}
Add 1 and 3 to get 4.
-\left(2+\sqrt{3}\right)
Divide each term of 4+2\sqrt{3} by 2 to get 2+\sqrt{3}.
-2-\sqrt{3}
To find the opposite of 2+\sqrt{3}, find the opposite of each term.