Solve for x
x = \frac{212}{51} = 4\frac{8}{51} \approx 4.156862745
Graph
Share
Copied to clipboard
-6\left(-x+2\right)+14\left(3x+2\right)=3\left(-x+6\right)+210
Multiply both sides of the equation by 42, the least common multiple of 7,3,14.
-6\left(-x\right)-12+14\left(3x+2\right)=3\left(-x+6\right)+210
Use the distributive property to multiply -6 by -x+2.
6x-12+14\left(3x+2\right)=3\left(-x+6\right)+210
Multiply -6 and -1 to get 6.
6x-12+42x+28=3\left(-x+6\right)+210
Use the distributive property to multiply 14 by 3x+2.
48x-12+28=3\left(-x+6\right)+210
Combine 6x and 42x to get 48x.
48x+16=3\left(-x+6\right)+210
Add -12 and 28 to get 16.
48x+16=3\left(-x\right)+18+210
Use the distributive property to multiply 3 by -x+6.
48x+16=3\left(-x\right)+228
Add 18 and 210 to get 228.
48x+16-3\left(-x\right)=228
Subtract 3\left(-x\right) from both sides.
48x+16-3\left(-1\right)x=228
Multiply -1 and 3 to get -3.
48x+16+3x=228
Multiply -3 and -1 to get 3.
51x+16=228
Combine 48x and 3x to get 51x.
51x=228-16
Subtract 16 from both sides.
51x=212
Subtract 16 from 228 to get 212.
x=\frac{212}{51}
Divide both sides by 51.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}