Solve for k
k=-\frac{H^{2}}{2}-3
H\neq 0
Solve for H
H=\sqrt{-2k-6}
H=-\sqrt{-2k-6}\text{, }k<-3
Share
Copied to clipboard
-H^{2}=2\left(k+3\right)
Variable k cannot be equal to -3 since division by zero is not defined. Multiply both sides of the equation by k+3.
-H^{2}=2k+6
Use the distributive property to multiply 2 by k+3.
2k+6=-H^{2}
Swap sides so that all variable terms are on the left hand side.
2k=-H^{2}-6
Subtract 6 from both sides.
\frac{2k}{2}=\frac{-H^{2}-6}{2}
Divide both sides by 2.
k=\frac{-H^{2}-6}{2}
Dividing by 2 undoes the multiplication by 2.
k=-\frac{H^{2}}{2}-3
Divide -H^{2}-6 by 2.
k=-\frac{H^{2}}{2}-3\text{, }k\neq -3
Variable k cannot be equal to -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}