Evaluate
2\sqrt{3}+2-\sqrt{6}-3\sqrt{2}\approx -1.228028815
Share
Copied to clipboard
-\frac{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}+\frac{3\sqrt{2}}{\sqrt{6}+\sqrt{3}}-\frac{4\sqrt{2}}{\sqrt{6}+\sqrt{2}}
Rationalize the denominator of \frac{\sqrt{6}}{\sqrt{3}+\sqrt{2}} by multiplying numerator and denominator by \sqrt{3}-\sqrt{2}.
-\frac{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}{\left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}+\frac{3\sqrt{2}}{\sqrt{6}+\sqrt{3}}-\frac{4\sqrt{2}}{\sqrt{6}+\sqrt{2}}
Consider \left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
-\frac{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}{3-2}+\frac{3\sqrt{2}}{\sqrt{6}+\sqrt{3}}-\frac{4\sqrt{2}}{\sqrt{6}+\sqrt{2}}
Square \sqrt{3}. Square \sqrt{2}.
-\frac{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}{1}+\frac{3\sqrt{2}}{\sqrt{6}+\sqrt{3}}-\frac{4\sqrt{2}}{\sqrt{6}+\sqrt{2}}
Subtract 2 from 3 to get 1.
-\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)+\frac{3\sqrt{2}}{\sqrt{6}+\sqrt{3}}-\frac{4\sqrt{2}}{\sqrt{6}+\sqrt{2}}
Anything divided by one gives itself.
-\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)+\frac{3\sqrt{2}\left(\sqrt{6}-\sqrt{3}\right)}{\left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{6}-\sqrt{3}\right)}-\frac{4\sqrt{2}}{\sqrt{6}+\sqrt{2}}
Rationalize the denominator of \frac{3\sqrt{2}}{\sqrt{6}+\sqrt{3}} by multiplying numerator and denominator by \sqrt{6}-\sqrt{3}.
-\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)+\frac{3\sqrt{2}\left(\sqrt{6}-\sqrt{3}\right)}{\left(\sqrt{6}\right)^{2}-\left(\sqrt{3}\right)^{2}}-\frac{4\sqrt{2}}{\sqrt{6}+\sqrt{2}}
Consider \left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{6}-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
-\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)+\frac{3\sqrt{2}\left(\sqrt{6}-\sqrt{3}\right)}{6-3}-\frac{4\sqrt{2}}{\sqrt{6}+\sqrt{2}}
Square \sqrt{6}. Square \sqrt{3}.
-\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)+\frac{3\sqrt{2}\left(\sqrt{6}-\sqrt{3}\right)}{3}-\frac{4\sqrt{2}}{\sqrt{6}+\sqrt{2}}
Subtract 3 from 6 to get 3.
-\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)+\frac{3\sqrt{2}\left(\sqrt{6}-\sqrt{3}\right)}{3}-\frac{4\sqrt{2}\left(\sqrt{6}-\sqrt{2}\right)}{\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{6}-\sqrt{2}\right)}
Rationalize the denominator of \frac{4\sqrt{2}}{\sqrt{6}+\sqrt{2}} by multiplying numerator and denominator by \sqrt{6}-\sqrt{2}.
-\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)+\frac{3\sqrt{2}\left(\sqrt{6}-\sqrt{3}\right)}{3}-\frac{4\sqrt{2}\left(\sqrt{6}-\sqrt{2}\right)}{\left(\sqrt{6}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Consider \left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{6}-\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
-\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)+\frac{3\sqrt{2}\left(\sqrt{6}-\sqrt{3}\right)}{3}-\frac{4\sqrt{2}\left(\sqrt{6}-\sqrt{2}\right)}{6-2}
Square \sqrt{6}. Square \sqrt{2}.
-\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)+\frac{3\sqrt{2}\left(\sqrt{6}-\sqrt{3}\right)}{3}-\frac{4\sqrt{2}\left(\sqrt{6}-\sqrt{2}\right)}{4}
Subtract 2 from 6 to get 4.
-\left(\sqrt{6}\sqrt{3}-\sqrt{6}\sqrt{2}\right)+\frac{3\sqrt{2}\left(\sqrt{6}-\sqrt{3}\right)}{3}-\frac{4\sqrt{2}\left(\sqrt{6}-\sqrt{2}\right)}{4}
Use the distributive property to multiply \sqrt{6} by \sqrt{3}-\sqrt{2}.
-\left(\sqrt{3}\sqrt{2}\sqrt{3}-\sqrt{6}\sqrt{2}\right)+\frac{3\sqrt{2}\left(\sqrt{6}-\sqrt{3}\right)}{3}-\frac{4\sqrt{2}\left(\sqrt{6}-\sqrt{2}\right)}{4}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
-\left(3\sqrt{2}-\sqrt{6}\sqrt{2}\right)+\frac{3\sqrt{2}\left(\sqrt{6}-\sqrt{3}\right)}{3}-\frac{4\sqrt{2}\left(\sqrt{6}-\sqrt{2}\right)}{4}
Multiply \sqrt{3} and \sqrt{3} to get 3.
-\left(3\sqrt{2}-\sqrt{2}\sqrt{3}\sqrt{2}\right)+\frac{3\sqrt{2}\left(\sqrt{6}-\sqrt{3}\right)}{3}-\frac{4\sqrt{2}\left(\sqrt{6}-\sqrt{2}\right)}{4}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
-\left(3\sqrt{2}-2\sqrt{3}\right)+\frac{3\sqrt{2}\left(\sqrt{6}-\sqrt{3}\right)}{3}-\frac{4\sqrt{2}\left(\sqrt{6}-\sqrt{2}\right)}{4}
Multiply \sqrt{2} and \sqrt{2} to get 2.
-3\sqrt{2}-\left(-2\sqrt{3}\right)+\frac{3\sqrt{2}\left(\sqrt{6}-\sqrt{3}\right)}{3}-\frac{4\sqrt{2}\left(\sqrt{6}-\sqrt{2}\right)}{4}
To find the opposite of 3\sqrt{2}-2\sqrt{3}, find the opposite of each term.
-3\sqrt{2}+2\sqrt{3}+\frac{3\sqrt{2}\left(\sqrt{6}-\sqrt{3}\right)}{3}-\frac{4\sqrt{2}\left(\sqrt{6}-\sqrt{2}\right)}{4}
The opposite of -2\sqrt{3} is 2\sqrt{3}.
-3\sqrt{2}+2\sqrt{3}+\sqrt{2}\left(\sqrt{6}-\sqrt{3}\right)-\frac{4\sqrt{2}\left(\sqrt{6}-\sqrt{2}\right)}{4}
Cancel out 3 and 3.
-3\sqrt{2}+2\sqrt{3}+\sqrt{2}\sqrt{6}-\sqrt{2}\sqrt{3}-\frac{4\sqrt{2}\left(\sqrt{6}-\sqrt{2}\right)}{4}
Use the distributive property to multiply \sqrt{2} by \sqrt{6}-\sqrt{3}.
-3\sqrt{2}+2\sqrt{3}+\sqrt{2}\sqrt{2}\sqrt{3}-\sqrt{2}\sqrt{3}-\frac{4\sqrt{2}\left(\sqrt{6}-\sqrt{2}\right)}{4}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
-3\sqrt{2}+2\sqrt{3}+2\sqrt{3}-\sqrt{2}\sqrt{3}-\frac{4\sqrt{2}\left(\sqrt{6}-\sqrt{2}\right)}{4}
Multiply \sqrt{2} and \sqrt{2} to get 2.
-3\sqrt{2}+2\sqrt{3}+2\sqrt{3}-\sqrt{6}-\frac{4\sqrt{2}\left(\sqrt{6}-\sqrt{2}\right)}{4}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
-3\sqrt{2}+4\sqrt{3}-\sqrt{6}-\frac{4\sqrt{2}\left(\sqrt{6}-\sqrt{2}\right)}{4}
Combine 2\sqrt{3} and 2\sqrt{3} to get 4\sqrt{3}.
-3\sqrt{2}+4\sqrt{3}-\sqrt{6}-\sqrt{2}\left(\sqrt{6}-\sqrt{2}\right)
Cancel out 4 and 4.
-3\sqrt{2}+4\sqrt{3}-\sqrt{6}-\left(\sqrt{2}\sqrt{6}-\left(\sqrt{2}\right)^{2}\right)
Use the distributive property to multiply \sqrt{2} by \sqrt{6}-\sqrt{2}.
-3\sqrt{2}+4\sqrt{3}-\sqrt{6}-\left(\sqrt{2}\sqrt{2}\sqrt{3}-\left(\sqrt{2}\right)^{2}\right)
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
-3\sqrt{2}+4\sqrt{3}-\sqrt{6}-\left(2\sqrt{3}-\left(\sqrt{2}\right)^{2}\right)
Multiply \sqrt{2} and \sqrt{2} to get 2.
-3\sqrt{2}+4\sqrt{3}-\sqrt{6}-\left(2\sqrt{3}-2\right)
The square of \sqrt{2} is 2.
-3\sqrt{2}+4\sqrt{3}-\sqrt{6}-2\sqrt{3}-\left(-2\right)
To find the opposite of 2\sqrt{3}-2, find the opposite of each term.
-3\sqrt{2}+4\sqrt{3}-\sqrt{6}-2\sqrt{3}+2
The opposite of -2 is 2.
-3\sqrt{2}+2\sqrt{3}-\sqrt{6}+2
Combine 4\sqrt{3} and -2\sqrt{3} to get 2\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}