Evaluate
\frac{4}{5}-\frac{\sqrt{10}}{b}
Factor
\frac{4b-5\sqrt{10}}{5b}
Share
Copied to clipboard
-\frac{\sqrt{10}}{b}+\frac{2}{3}\times \frac{6}{5}
Divide \frac{2}{3} by \frac{5}{6} by multiplying \frac{2}{3} by the reciprocal of \frac{5}{6}.
-\frac{\sqrt{10}}{b}+\frac{2\times 6}{3\times 5}
Multiply \frac{2}{3} times \frac{6}{5} by multiplying numerator times numerator and denominator times denominator.
-\frac{\sqrt{10}}{b}+\frac{12}{15}
Do the multiplications in the fraction \frac{2\times 6}{3\times 5}.
-\frac{\sqrt{10}}{b}+\frac{4}{5}
Reduce the fraction \frac{12}{15} to lowest terms by extracting and canceling out 3.
-\frac{5\sqrt{10}}{5b}+\frac{4b}{5b}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b and 5 is 5b. Multiply -\frac{\sqrt{10}}{b} times \frac{5}{5}. Multiply \frac{4}{5} times \frac{b}{b}.
\frac{-5\sqrt{10}+4b}{5b}
Since -\frac{5\sqrt{10}}{5b} and \frac{4b}{5b} have the same denominator, add them by adding their numerators.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}