Evaluate
\frac{\pi +33}{36}\approx 1.003933129
Factor
\frac{\pi + 33}{36} = 1.0039331292663833
Share
Copied to clipboard
\frac{\pi \times 5}{20\times 9}-\frac{5}{24}\left(-\frac{22}{5}\right)
Multiply -\frac{\pi }{20} times -\frac{5}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{\pi }{4\times 9}-\frac{5}{24}\left(-\frac{22}{5}\right)
Cancel out 5 in both numerator and denominator.
\frac{\pi }{4\times 9}-\frac{5\left(-22\right)}{24\times 5}
Multiply \frac{5}{24} times -\frac{22}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{\pi }{4\times 9}-\frac{-22}{24}
Cancel out 5 in both numerator and denominator.
\frac{\pi }{4\times 9}-\left(-\frac{11}{12}\right)
Reduce the fraction \frac{-22}{24} to lowest terms by extracting and canceling out 2.
\frac{\pi }{4\times 9}+\frac{11}{12}
The opposite of -\frac{11}{12} is \frac{11}{12}.
\frac{\pi }{36}+\frac{11\times 3}{36}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4\times 9 and 12 is 36. Multiply \frac{11}{12} times \frac{3}{3}.
\frac{\pi +11\times 3}{36}
Since \frac{\pi }{36} and \frac{11\times 3}{36} have the same denominator, add them by adding their numerators.
\frac{\pi +33}{36}
Do the multiplications in \pi +11\times 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}