Solve for E
\left\{\begin{matrix}E=U\text{, }&\psi \neq 0\text{ and }m\neq 0\\E\in \mathrm{R}\text{, }&\psi =0\text{ and }m\neq 0\end{matrix}\right.
Solve for U
\left\{\begin{matrix}U=E\text{, }&\psi \neq 0\text{ and }m\neq 0\\U\in \mathrm{R}\text{, }&\psi =0\text{ and }m\neq 0\end{matrix}\right.
Share
Copied to clipboard
\left(-\frac{ℏ^{2}}{2m}\right)\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}\times 2m+U\psi \times 2m=E\psi \times 2m
Multiply both sides of the equation by 2m.
\frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}}{2m}\times 2m+U\psi \times 2m=E\psi \times 2m
Express \left(-\frac{ℏ^{2}}{2m}\right)\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}} as a single fraction.
\frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}\times 2}{2m}m+U\psi \times 2m=E\psi \times 2m
Express \frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}}{2m}\times 2 as a single fraction.
\frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}}{m}m+U\psi \times 2m=E\psi \times 2m
Cancel out 2 in both numerator and denominator.
\frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}m}{m}+U\psi \times 2m=E\psi \times 2m
Express \frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}}{m}m as a single fraction.
-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}+U\psi \times 2m=E\psi \times 2m
Cancel out m in both numerator and denominator.
E\psi \times 2m=-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}+U\psi \times 2m
Swap sides so that all variable terms are on the left hand side.
2m\psi E=2Um\psi
The equation is in standard form.
\frac{2m\psi E}{2m\psi }=\frac{2Um\psi }{2m\psi }
Divide both sides by 2\psi m.
E=\frac{2Um\psi }{2m\psi }
Dividing by 2\psi m undoes the multiplication by 2\psi m.
E=U
Divide 2U\psi m by 2\psi m.
\left(-\frac{ℏ^{2}}{2m}\right)\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}\times 2m+U\psi \times 2m=E\psi \times 2m
Multiply both sides of the equation by 2m.
\frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}}{2m}\times 2m+U\psi \times 2m=E\psi \times 2m
Express \left(-\frac{ℏ^{2}}{2m}\right)\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}} as a single fraction.
\frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}\times 2}{2m}m+U\psi \times 2m=E\psi \times 2m
Express \frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}}{2m}\times 2 as a single fraction.
\frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}}{m}m+U\psi \times 2m=E\psi \times 2m
Cancel out 2 in both numerator and denominator.
\frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}m}{m}+U\psi \times 2m=E\psi \times 2m
Express \frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}}{m}m as a single fraction.
-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}+U\psi \times 2m=E\psi \times 2m
Cancel out m in both numerator and denominator.
U\psi \times 2m=E\psi \times 2m+ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}
Add ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}} to both sides.
2m\psi U=2Em\psi
The equation is in standard form.
\frac{2m\psi U}{2m\psi }=\frac{2Em\psi }{2m\psi }
Divide both sides by 2\psi m.
U=\frac{2Em\psi }{2m\psi }
Dividing by 2\psi m undoes the multiplication by 2\psi m.
U=E
Divide 2E\psi m by 2\psi m.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}