Skip to main content
Solve for E
Tick mark Image
Solve for U
Tick mark Image

Similar Problems from Web Search

Share

\left(-\frac{ℏ^{2}}{2m}\right)\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}\times 2m+U\psi \times 2m=E\psi \times 2m
Multiply both sides of the equation by 2m.
\frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}}{2m}\times 2m+U\psi \times 2m=E\psi \times 2m
Express \left(-\frac{ℏ^{2}}{2m}\right)\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}} as a single fraction.
\frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}\times 2}{2m}m+U\psi \times 2m=E\psi \times 2m
Express \frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}}{2m}\times 2 as a single fraction.
\frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}}{m}m+U\psi \times 2m=E\psi \times 2m
Cancel out 2 in both numerator and denominator.
\frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}m}{m}+U\psi \times 2m=E\psi \times 2m
Express \frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}}{m}m as a single fraction.
-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}+U\psi \times 2m=E\psi \times 2m
Cancel out m in both numerator and denominator.
E\psi \times 2m=-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}+U\psi \times 2m
Swap sides so that all variable terms are on the left hand side.
2m\psi E=2Um\psi
The equation is in standard form.
\frac{2m\psi E}{2m\psi }=\frac{2Um\psi }{2m\psi }
Divide both sides by 2\psi m.
E=\frac{2Um\psi }{2m\psi }
Dividing by 2\psi m undoes the multiplication by 2\psi m.
E=U
Divide 2U\psi m by 2\psi m.
\left(-\frac{ℏ^{2}}{2m}\right)\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}\times 2m+U\psi \times 2m=E\psi \times 2m
Multiply both sides of the equation by 2m.
\frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}}{2m}\times 2m+U\psi \times 2m=E\psi \times 2m
Express \left(-\frac{ℏ^{2}}{2m}\right)\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}} as a single fraction.
\frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}\times 2}{2m}m+U\psi \times 2m=E\psi \times 2m
Express \frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}}{2m}\times 2 as a single fraction.
\frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}}{m}m+U\psi \times 2m=E\psi \times 2m
Cancel out 2 in both numerator and denominator.
\frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}m}{m}+U\psi \times 2m=E\psi \times 2m
Express \frac{-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}}{m}m as a single fraction.
-ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}+U\psi \times 2m=E\psi \times 2m
Cancel out m in both numerator and denominator.
U\psi \times 2m=E\psi \times 2m+ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}}
Add ℏ^{2}\frac{\mathrm{d}(\psi )}{\mathrm{d}x^{2}} to both sides.
2m\psi U=2Em\psi
The equation is in standard form.
\frac{2m\psi U}{2m\psi }=\frac{2Em\psi }{2m\psi }
Divide both sides by 2\psi m.
U=\frac{2Em\psi }{2m\psi }
Dividing by 2\psi m undoes the multiplication by 2\psi m.
U=E
Divide 2E\psi m by 2\psi m.