Solve for x
x = -\frac{18}{17} = -1\frac{1}{17} \approx -1.058823529
Graph
Share
Copied to clipboard
-3\left(x+3\left(2+x-\frac{x}{2}\right)-3\right)=x
Multiply both sides of the equation by 3.
-3\left(x+3\left(2+\frac{1}{2}x\right)-3\right)=x
Combine x and -\frac{x}{2} to get \frac{1}{2}x.
-3\left(x+6+3\times \frac{1}{2}x-3\right)=x
Use the distributive property to multiply 3 by 2+\frac{1}{2}x.
-3\left(x+6+\frac{3}{2}x-3\right)=x
Multiply 3 and \frac{1}{2} to get \frac{3}{2}.
-3\left(\frac{5}{2}x+6-3\right)=x
Combine x and \frac{3}{2}x to get \frac{5}{2}x.
-3\left(\frac{5}{2}x+3\right)=x
Subtract 3 from 6 to get 3.
-3\times \frac{5}{2}x-9=x
Use the distributive property to multiply -3 by \frac{5}{2}x+3.
\frac{-3\times 5}{2}x-9=x
Express -3\times \frac{5}{2} as a single fraction.
\frac{-15}{2}x-9=x
Multiply -3 and 5 to get -15.
-\frac{15}{2}x-9=x
Fraction \frac{-15}{2} can be rewritten as -\frac{15}{2} by extracting the negative sign.
-\frac{15}{2}x-9-x=0
Subtract x from both sides.
-\frac{17}{2}x-9=0
Combine -\frac{15}{2}x and -x to get -\frac{17}{2}x.
-\frac{17}{2}x=9
Add 9 to both sides. Anything plus zero gives itself.
x=9\left(-\frac{2}{17}\right)
Multiply both sides by -\frac{2}{17}, the reciprocal of -\frac{17}{2}.
x=\frac{9\left(-2\right)}{17}
Express 9\left(-\frac{2}{17}\right) as a single fraction.
x=\frac{-18}{17}
Multiply 9 and -2 to get -18.
x=-\frac{18}{17}
Fraction \frac{-18}{17} can be rewritten as -\frac{18}{17} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}