Evaluate
\frac{3}{10}=0.3
Factor
\frac{3}{2 \cdot 5} = 0.3
Share
Copied to clipboard
-\left(\frac{6+1}{2}-\left(-\left(\frac{7\times 5+1}{5}-4\right)+\frac{20}{5}-2\right)-5\right)
Multiply 3 and 2 to get 6.
-\left(\frac{7}{2}-\left(-\left(\frac{7\times 5+1}{5}-4\right)+\frac{20}{5}-2\right)-5\right)
Add 6 and 1 to get 7.
-\left(\frac{7}{2}-\left(-\left(\frac{35+1}{5}-4\right)+\frac{20}{5}-2\right)-5\right)
Multiply 7 and 5 to get 35.
-\left(\frac{7}{2}-\left(-\left(\frac{36}{5}-4\right)+\frac{20}{5}-2\right)-5\right)
Add 35 and 1 to get 36.
-\left(\frac{7}{2}-\left(-\left(\frac{36}{5}-\frac{20}{5}\right)+\frac{20}{5}-2\right)-5\right)
Convert 4 to fraction \frac{20}{5}.
-\left(\frac{7}{2}-\left(-\frac{36-20}{5}+\frac{20}{5}-2\right)-5\right)
Since \frac{36}{5} and \frac{20}{5} have the same denominator, subtract them by subtracting their numerators.
-\left(\frac{7}{2}-\left(-\frac{16}{5}+\frac{20}{5}-2\right)-5\right)
Subtract 20 from 36 to get 16.
-\left(\frac{7}{2}-\left(\frac{-16+20}{5}-2\right)-5\right)
Since -\frac{16}{5} and \frac{20}{5} have the same denominator, add them by adding their numerators.
-\left(\frac{7}{2}-\left(\frac{4}{5}-2\right)-5\right)
Add -16 and 20 to get 4.
-\left(\frac{7}{2}-\left(\frac{4}{5}-\frac{10}{5}\right)-5\right)
Convert 2 to fraction \frac{10}{5}.
-\left(\frac{7}{2}-\frac{4-10}{5}-5\right)
Since \frac{4}{5} and \frac{10}{5} have the same denominator, subtract them by subtracting their numerators.
-\left(\frac{7}{2}-\left(-\frac{6}{5}\right)-5\right)
Subtract 10 from 4 to get -6.
-\left(\frac{7}{2}+\frac{6}{5}-5\right)
The opposite of -\frac{6}{5} is \frac{6}{5}.
-\left(\frac{35}{10}+\frac{12}{10}-5\right)
Least common multiple of 2 and 5 is 10. Convert \frac{7}{2} and \frac{6}{5} to fractions with denominator 10.
-\left(\frac{35+12}{10}-5\right)
Since \frac{35}{10} and \frac{12}{10} have the same denominator, add them by adding their numerators.
-\left(\frac{47}{10}-5\right)
Add 35 and 12 to get 47.
-\left(\frac{47}{10}-\frac{50}{10}\right)
Convert 5 to fraction \frac{50}{10}.
-\frac{47-50}{10}
Since \frac{47}{10} and \frac{50}{10} have the same denominator, subtract them by subtracting their numerators.
-\left(-\frac{3}{10}\right)
Subtract 50 from 47 to get -3.
\frac{3}{10}
The opposite of -\frac{3}{10} is \frac{3}{10}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}