Evaluate
-\frac{2\sqrt{2}}{3}-\frac{4\sqrt{5}}{15}+\frac{4}{3}\approx -0.205760502
Share
Copied to clipboard
\frac{-\left(\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}-\left(-\frac{1}{\sqrt{5}}\right)+\left(-\sqrt{4}\right)^{3}+2\left(\sqrt{16}-\frac{1}{2}\right)\right)}{\frac{3}{4}}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{-\left(\frac{\sqrt{2}}{2}-\left(-\frac{1}{\sqrt{5}}\right)+\left(-\sqrt{4}\right)^{3}+2\left(\sqrt{16}-\frac{1}{2}\right)\right)}{\frac{3}{4}}
The square of \sqrt{2} is 2.
\frac{-\left(\frac{\sqrt{2}}{2}-\left(-\frac{\sqrt{5}}{\left(\sqrt{5}\right)^{2}}\right)+\left(-\sqrt{4}\right)^{3}+2\left(\sqrt{16}-\frac{1}{2}\right)\right)}{\frac{3}{4}}
Rationalize the denominator of \frac{1}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{-\left(\frac{\sqrt{2}}{2}-\left(-\frac{\sqrt{5}}{5}\right)+\left(-\sqrt{4}\right)^{3}+2\left(\sqrt{16}-\frac{1}{2}\right)\right)}{\frac{3}{4}}
The square of \sqrt{5} is 5.
\frac{-\left(\frac{\sqrt{2}}{2}-\left(-\frac{\sqrt{5}}{5}\right)+\left(-2\right)^{3}+2\left(\sqrt{16}-\frac{1}{2}\right)\right)}{\frac{3}{4}}
Calculate the square root of 4 and get 2.
\frac{-\left(\frac{\sqrt{2}}{2}-\left(-\frac{\sqrt{5}}{5}\right)-8+2\left(\sqrt{16}-\frac{1}{2}\right)\right)}{\frac{3}{4}}
Calculate -2 to the power of 3 and get -8.
\frac{-\left(\frac{\sqrt{2}}{2}-\left(-\frac{\sqrt{5}}{5}\right)-8+2\left(4-\frac{1}{2}\right)\right)}{\frac{3}{4}}
Calculate the square root of 16 and get 4.
\frac{-\left(\frac{\sqrt{2}}{2}-\left(-\frac{\sqrt{5}}{5}\right)-8+2\times \frac{7}{2}\right)}{\frac{3}{4}}
Subtract \frac{1}{2} from 4 to get \frac{7}{2}.
\frac{-\left(\frac{\sqrt{2}}{2}-\left(-\frac{\sqrt{5}}{5}\right)-8+7\right)}{\frac{3}{4}}
Multiply 2 and \frac{7}{2} to get 7.
\frac{-\left(\frac{\sqrt{2}}{2}-\left(-\frac{\sqrt{5}}{5}\right)-1\right)}{\frac{3}{4}}
Add -8 and 7 to get -1.
\frac{-\left(\frac{\sqrt{2}}{2}-\left(-\frac{\sqrt{5}}{5}\right)\right)+1}{\frac{3}{4}}
To find the opposite of \frac{\sqrt{2}}{2}-\left(-\frac{\sqrt{5}}{5}\right)-1, find the opposite of each term.
\frac{\left(-\left(\frac{\sqrt{2}}{2}-\left(-\frac{\sqrt{5}}{5}\right)\right)+1\right)\times 4}{3}
Divide -\left(\frac{\sqrt{2}}{2}-\left(-\frac{\sqrt{5}}{5}\right)\right)+1 by \frac{3}{4} by multiplying -\left(\frac{\sqrt{2}}{2}-\left(-\frac{\sqrt{5}}{5}\right)\right)+1 by the reciprocal of \frac{3}{4}.
\frac{\left(-\left(\frac{\sqrt{2}}{2}+\frac{\sqrt{5}}{5}\right)+1\right)\times 4}{3}
Multiply -1 and -1 to get 1.
\frac{\left(-\left(\frac{5\sqrt{2}}{10}+\frac{2\sqrt{5}}{10}\right)+1\right)\times 4}{3}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 5 is 10. Multiply \frac{\sqrt{2}}{2} times \frac{5}{5}. Multiply \frac{\sqrt{5}}{5} times \frac{2}{2}.
\frac{\left(-\frac{5\sqrt{2}+2\sqrt{5}}{10}+1\right)\times 4}{3}
Since \frac{5\sqrt{2}}{10} and \frac{2\sqrt{5}}{10} have the same denominator, add them by adding their numerators.
\frac{\left(-\frac{5\sqrt{2}+2\sqrt{5}}{10}+\frac{10}{10}\right)\times 4}{3}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{10}{10}.
\frac{\frac{-\left(5\sqrt{2}+2\sqrt{5}\right)+10}{10}\times 4}{3}
Since -\frac{5\sqrt{2}+2\sqrt{5}}{10} and \frac{10}{10} have the same denominator, add them by adding their numerators.
\frac{\frac{-5\sqrt{2}-2\sqrt{5}+10}{10}\times 4}{3}
Do the multiplications in -\left(5\sqrt{2}+2\sqrt{5}\right)+10.
\frac{\frac{\left(-5\sqrt{2}-2\sqrt{5}+10\right)\times 4}{10}}{3}
Express \frac{-5\sqrt{2}-2\sqrt{5}+10}{10}\times 4 as a single fraction.
\frac{\left(-5\sqrt{2}-2\sqrt{5}+10\right)\times 4}{10\times 3}
Express \frac{\frac{\left(-5\sqrt{2}-2\sqrt{5}+10\right)\times 4}{10}}{3} as a single fraction.
\frac{2\left(-5\sqrt{2}-2\sqrt{5}+10\right)}{3\times 5}
Cancel out 2 in both numerator and denominator.
\frac{2\left(-5\sqrt{2}-2\sqrt{5}+10\right)}{15}
Multiply 3 and 5 to get 15.
\frac{-10\sqrt{2}-4\sqrt{5}+20}{15}
Use the distributive property to multiply 2 by -5\sqrt{2}-2\sqrt{5}+10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}